
CS 221 – Artificial Intelligence

Super VIP Cheatsheet: Artificial Intelligence

Afshine Amidi and Shervine Amidi

September 8, 2019

Contents

1 Reflex-based models 3
1.1 Linear predictors .

1.1.1 Classification .
1.1.2 Regression .

1.2 Loss minimization .
1.3 Non-linear predictors .
1.4 Stochastic gradient descent .
1.5 Fine-tuning models .
1.6 Unsupervised Learning .

1.6.1 k-means .
1.6.2 Principal Component Analysis

2 States-based models 10
2.1 Search optimization .

2.1.1 Tree search .
2.1.2 Graph search .
2.1.3 Learning costs .
2.1.4 A� search .
2.1.5 Relaxation .

2.2 Markov decision processes .
2.2.1 Notations .
2.2.2 Applications .
2.2.3 When unknown transitions and rewards

2.3 Game playing .
2.3.1 Speeding up minimax .
2.3.2 Simultaneous games .
2.3.3 Non-zero-sum games .

Stanford University

Afshine Amidi & Shervine Amidi

3 Variables-based models 24
3.1 Constraint satisfaction problems .

3.1.1 Factor graphs .
3.1.2 Dynamic ordering .
3.1.3 Approximate methods .
3.1.4 Factor graph transformations

3.2 Bayesian networks .
3.2.1 Introduction .
3.2.2 Probabilistic programs .
3.2.3 Inference .

4 Logic-based models 32
4.1 Basics .
4.2 Knowledge base .
4.3 Propositional logic .
4.4 First-order logic .

Spring 2019

CS 221 – Artificial Intelligence

1 Reflex-based models

1.1 Linear predictors

In this section, we will go through reflex-based models that can improve with experience, by
going through samples that have input-output pairs.

� Feature vector – The feature vector of an input x is noted φ(x) and is such that:

φ(x) =

[
φ1(x)

...
φd(x)

]
∈ Rd

� Score – The score s(x,w) of an example (φ(x),y) ∈ Rd × R associated to a linear model of
weights w ∈ Rd is given by the inner product:

s(x,w) = w · φ(x)

1.1.1 Classification

� Linear classifier – Given a weight vector w ∈ Rd and a feature vector φ(x) ∈ Rd, the binary
linear classifier fw is given by:

fw(x) = sign(s(x,w)) =

{
+1 if w · φ(x) > 0
−1 if w · φ(x) < 0
? if w · φ(x) = 0

� Margin – The margin m(x,y,w) ∈ R of an example (φ(x),y) ∈ Rd × {−1, + 1} associated to
a linear model of weights w ∈ Rd quantifies the confidence of the prediction: larger values are
better. It is given by:

m(x,y,w) = s(x,w) × y

Stanford University

Afshine Amidi & Shervine Amidi

1.1.2 Regression

� Linear regression – Given a weight vector w ∈ Rd and a feature vector φ(x) ∈ Rd, the
output of a linear regression of weights w denoted as fw is given by:

fw(x) = s(x,w)

� Residual – The residual res(x,y,w) ∈ R is defined as being the amount by which the prediction
fw(x) overshoots the target y:

res(x,y,w) = fw(x) − y

1.2 Loss minimization

� Loss function – A loss function Loss(x,y,w) quantifies how unhappy we are with the weights
w of the model in the prediction task of output y from input x. It is a quantity we want to
minimize during the training process.

� Classification case – The classification of a sample x of true label y ∈ {−1,+1} with a linear
model of weights w can be done with the predictor fw(x) � sign(s(x,w)). In this situation, a
metric of interest quantifying the quality of the classification is given by the margin m(x,y,w),
and can be used with the following loss functions:

Name Zero-one loss Hinge loss Logistic loss

Loss(x,y,w) 1{m(x,y,w)�0} max(1 − m(x,y,w), 0) log(1 + e−m(x,y,w))

Illustration

� Regression case – The prediction of a sample x of true label y ∈ R with a linear model of
weights w can be done with the predictor fw(x) � s(x,w). In this situation, a metric of interest
quantifying the quality of the regression is given by the margin res(x,y,w) and can be used with
the following loss functions:

Name Squared loss Absolute deviation loss

Loss(x,y,w) (res(x,y,w))2 |res(x,y,w)|

Illustration

Spring 2019

CS 221 – Artificial Intelligence

� Loss minimization framework – In order to train a model, we want to minimize the
training loss is defined as follows:

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

Loss(x,y,w)

1.3 Non-linear predictors

� k-nearest neighbors – The k-nearest neighbors algorithm, commonly known as k-NN, is a
non-parametric approach where the response of a data point is determined by the nature of its
k neighbors from the training set. It can be used in both classification and regression settings.

Remark: the higher the parameter k, the higher the bias, and the lower the parameter k, the
higher the variance.

� Neural networks – Neural networks are a class of models that are built with layers. Com-
monly used types of neural networks include convolutional and recurrent neural networks. The
vocabulary around neural networks architectures is described in the figure below:

By noting i the ith layer of the network and j the jth hidden unit of the layer, we have:

z
[i]
j = w

[i]
j

T
x + b

[i]
j

where we note w, b, x, z the weight, bias, input and non-activated output of the neuron respec-
tively.

1.4 Stochastic gradient descent

� Gradient descent – By noting η ∈ R the learning rate (also called step size), the update
rule for gradient descent is expressed with the learning rate and the loss function Loss(x,y,w) as
follows:

Stanford University

Afshine Amidi & Shervine Amidi

w ←− w − η∇wLoss(x,y,w)

� Stochastic updates – Stochastic gradient descent (SGD) updates the parameters of the
model one training example (φ(x),y) ∈ Dtrain at a time. This method leads to sometimes noisy,
but fast updates.

� Batch updates – Batch gradient descent (BGD) updates the parameters of the model one
batch of examples (e.g. the entire training set) at a time. This method computes stable update
directions, at a greater computational cost.

1.5 Fine-tuning models

� Hypothesis class – A hypothesis class F is the set of possible predictors with a fixed φ(x)
and varying w:

F =
{

fw : w ∈ Rd
}

� Logistic function – The logistic function σ, also called the sigmoid function, is defined as:

∀z ∈] − ∞, + ∞[, σ(z) =
1

1 + e−z

Remark: we have σ′(z) = σ(z)(1 − σ(z)).

� Backpropagation – The forward pass is done through fi, which is the value for the subex-
pression rooted at i, while the backward pass is done through gi = ∂out

∂fi
and represents how fi

influences the output.

� Approximation and estimation error – The approximation error εapprox represents how
far the entire hypothesis class F is from the target predictor g∗, while the estimation error εest
quantifies how good the predictor f̂ is with respect to the best predictor f∗ of the hypothesis
class F .

Spring 2019

CS 221 – Artificial Intelligence

� Regularization – The regularization procedure aims at avoiding the model to overfit the
data and thus deals with high variance issues. The following table sums up the different types
of commonly used regularization techniques:

LASSO Ridge Elastic Net

- Shrinks coefficients to 0
- Good for variable selection Makes coefficients smaller Tradeoff between variable

selection and small coefficients

... + λ||θ||1 ... + λ||θ||22 ... + λ

[
(1 − α)||θ||1 + α||θ||22

]
λ ∈ R λ ∈ R λ ∈ R, α ∈ [0,1]

� Hyperparameters – Hyperparameters are the properties of the learning algorithm, and
include features, regularization parameter λ, number of iterations T , step size η, etc.

� Sets vocabulary – When selecting a model, we distinguish 3 different parts of the data that
we have as follows:

Training set Validation set Testing set

- Model is trained
- Usually 80 of the dataset

- Model is assessed
- Usually 20 of the dataset
- Also called hold-out

- Model gives predictions
- Unseen data
or development set

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen
test set. These are represented in the figure below:

Stanford University

Afshine Amidi & Shervine Amidi

1.6 Unsupervised Learning

The class of unsupervised learning methods aims at discovering the structure of the data, which
may have of rich latent structures.

1.6.1 k-means

� Clustering – Given a training set of input points Dtrain, the goal of a clustering algorithm
is to assign each point φ(xi) to a cluster zi ∈ {1,...,k}.

� Objective function – The loss function for one of the main clustering algorithms, k-means,
is given by:

Lossk-means(x,μ) =
n∑

i=1

||φ(xi) − μzi ||2

� Algorithm – After randomly initializing the cluster centroids μ1,μ2,...,μk ∈ Rn, the k-means
algorithm repeats the following step until convergence:

zi = arg min
j

||φ(xi) − μj ||2 and μj =

m∑
i=1

1{zi=j}φ(xi)

m∑
i=1

1{zi=j}

1.6.2 Principal Component Analysis
� Eigenvalue, eigenvector – Given a matrix A ∈ Rn×n, λ is said to be an eigenvalue of A if
there exists a vector z ∈ Rn\{0}, called eigenvector, such that we have:

Az = λz

Spring 2019

CS 221 – Artificial Intelligence

� Spectral theorem – Let A ∈ Rn×n. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U ∈ Rn×n. By noting Λ = diag(λ1,...,λn), we have:

∃Λ diagonal, A = UΛUT

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of
matrix A.

� Algorithm – The Principal Component Analysis (PCA) procedure is a dimension reduction
technique that projects the data on k dimensions by maximizing the variance of the data as
follows:

• Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

x
(i)
j ←

x
(i)
j − μj

σj
where μj =

1
m

m∑
i=1

x
(i)
j and σ2

j =
1
m

m∑
i=1

(x(i)
j − μj)2

• Step 2: Compute Σ =
1
m

m∑
i=1

x(i)x(i)T ∈ Rn×n, which is symmetric with real eigenvalues.

• Step 3: Compute u1, ..., uk ∈ Rn the k orthogonal principal eigenvectors of Σ, i.e. the
orthogonal eigenvectors of the k largest eigenvalues.

• Step 4: Project the data on span
R

(u1,...,uk). This procedure maximizes the variance
among all k-dimensional spaces.

Stanford University

Afshine Amidi & Shervine Amidi

2 States-based models

2.1 Search optimization

In this section, we assume that by accomplishing action a from state s, we deterministically
arrive in state Succ(s,a). The goal here is to determine a sequence of actions (a1,a2,a3,a4,...)
that starts from an initial state and leads to an end state. In order to solve this kind of problem,
our objective will be to find the minimum cost path by using states-based models.

2.1.1 Tree search

This category of states-based algorithms explores all possible states and actions. It is quite
memory efficient, and is suitable for huge state spaces but the runtime can become exponential
in the worst cases.

� Search problem – A search problem is defined with:

• a starting state sstart

• possible actions Actions(s) from state s

• action cost Cost(s,a) from state s with action a

• successor Succ(s,a) of state s after action a

• whether an end state was reached IsEnd(s)

The objective is to find a path that minimizes the cost.

� Backtracking search – Backtracking search is a naive recursive algorithm that tries all
possibilities to find the minimum cost path. Here, action costs can be either positive or negative.

� Breadth-first search (BFS) – Breadth-first search is a graph search algorithm that does a
level-by-level traversal. We can implement it iteratively with the help of a queue that stores at

Spring 2019

CS 221 – Artificial Intelligence

each step future nodes to be visited. For this algorithm, we can assume action costs to be equal
to a constant c � 0.

� Depth-first search (DFS) – Depth-first search is a search algorithm that traverses a graph
by following each path as deep as it can. We can implement it recursively, or iteratively with
the help of a stack that stores at each step future nodes to be visited. For this algorithm, action
costs are assumed to be equal to 0.

� Iterative deepening – The iterative deepening trick is a modification of the depth-first
search algorithm so that it stops after reaching a certain depth, which guarantees optimality
when all action costs are equal. Here, we assume that action costs are equal to a constant c � 0.

� Tree search algorithms summary – By noting b the number of actions per state, d the
solution depth, and D the maximum depth, we have:

Algorithm Action costs Space Time

Backtracking search any O(D) O(bD)

Breadth-first search c � 0 O(bd) O(bd)

Depth-first search 0 O(D) O(bD)

DFS-Iterative deepening c � 0 O(d) O(bd)

2.1.2 Graph search

This category of states-based algorithms aims at constructing optimal paths, enabling exponen-
tial savings. In this section, we will focus on dynamic programming and uniform cost search.

Stanford University

Afshine Amidi & Shervine Amidi

� Graph – A graph is comprised of a set of vertices V (also called nodes) as well as a set of
edges E (also called links).

Remark: a graph is said to be acylic when there is no cycle.

� State – A state is a summary of all past actions sufficient to choose future actions optimally.

� Dynamic programming – Dynamic programming (DP) is a backtracking search algorithm
with memoization (i.e. partial results are saved) whose goal is to find a minimum cost path from
state s to an end state send. It can potentially have exponential savings compared to traditional
graph search algorithms, and has the property to only work for acyclic graphs. For any given
state s, the future cost is computed as follows:

FutureCost(s) =

{
0 if IsEnd(s)

min
a∈Actions(s)

[
Cost(s,a) + FutureCost(Succ(s,a))

]
otherwise

Remark: the figure above illustrates a bottom-to-top approach whereas the formula provides the
intuition of a top-to-bottom problem resolution.

� Types of states – The table below presents the terminology when it comes to states in the
context of uniform cost search:

Spring 2019

CS 221 – Artificial Intelligence

State Explanation

Explored E States for which the optimal path has
already been found

Frontier F States seen for which we are still figuring out
how to get there with the cheapest cost

Unexplored U States not seen yet

� Uniform cost search – Uniform cost search (UCS) is a search algorithm that aims at finding
the shortest path from a state sstart to an end state send. It explores states s in increasing order
of PastCost(s) and relies on the fact that all action costs are non-negative.

Remark 1: the UCS algorithm is logically equivalent to Djikstra’s algorithm.
Remark 2: the algorithm would not work for a problem with negative action costs, and adding a
positive constant to make them non-negative would not solve the problem since this would end
up being a different problem.

� Correctness theorem – When a state s is popped from the frontier F and moved to explored
set E, its priority is equal to PastCost(s) which is the minimum cost path from sstart to s.

� Graph search algorithms summary – By noting N the number of total states, n of which
are explored before the end state send, we have:

Algorithm Acyclicity Costs Time/space

Dynamic programming yes any O(N)

Uniform cost search no c � 0 O(n log(n))

Remark: the complexity countdown supposes the number of possible actions per state to be
constant.

2.1.3 Learning costs

Suppose we are not given the values of Cost(s,a), we want to estimate these quantities from a
training set of minimizing-cost-path sequence of actions (a1, a2, ..., ak).

� Structured perceptron – The structured perceptron is an algorithm aiming at iteratively
learning the cost of each state-action pair. At each step, it:

Stanford University

Afshine Amidi & Shervine Amidi

• decreases the estimated cost of each state-action of the true minimizing path y given by
the training data,

• increases the estimated cost of each state-action of the current predicted path y′ inferred
from the learned weights.

Remark: there are several versions of the algorithm, one of which simplifies the problem to only
learning the cost of each action a, and the other parametrizes Cost(s,a) to a feature vector of
learnable weights.

2.1.4 A� search

� Heuristic function – A heuristic is a function h over states s, where each h(s) aims at
estimating FutureCost(s), the cost of the path from s to send.

� Algorithm – A∗ is a search algorithm that aims at finding the shortest path from a state s to
an end state send. It explores states s in increasing order of PastCost(s) + h(s). It is equivalent
to a uniform cost search with edge costs Cost′(s,a) given by:

Cost′(s,a) = Cost(s,a) + h(Succ(s,a)) − h(s)

Remark: this algorithm can be seen as a biased version of UCS exploring states estimated to be
closer to the end state.

� Consistency – A heuristic h is said to be consistent if it satisfies the two following properties:

• For all states s and actions a,

h(s) � Cost(s,a) + h(Succ(s,a))

• The end state verifies the following:

h(send) = 0

Spring 2019

CS 221 – Artificial Intelligence

� Correctness – If h is consistent, then A∗ returns the minimum cost path.

� Admissibility – A heuristic h is said to be admissible if we have:

h(s) � FutureCost(s)

� Theorem – Let h(s) be a given heuristic. We have:

h(s) consistent =⇒ h(s) admissible

� Efficiency – A∗ explores all states s satisfying the following equation:

PastCost(s) � PastCost(send) − h(s)

Remark: larger values of h(s) is better as this equation shows it will restrict the set of states s
going to be explored.

2.1.5 Relaxation

It is a framework for producing consistent heuristics. The idea is to find closed-form reduced
costs by removing constraints and use them as heuristics.

� Relaxed search problem – The relaxation of search problem P with costs Cost is noted
Prel with costs Costrel, and satisfies the identity:

Costrel(s,a) � Cost(s,a)

� Relaxed heuristic – Given a relaxed search problem Prel, we define the relaxed heuristic
h(s) = FutureCostrel(s) as the minimum cost path from s to an end state in the graph of costs
Costrel(s,a).

� Consistency of relaxed heuristics – Let Prel be a given relaxed problem. By theorem, we
have:

h(s) = FutureCostrel(s) =⇒ h(s) consistent

� Tradeoff when choosing heuristic – We have to balance two aspects in choosing a heuristic:

• Computational efficiency: h(s) = FutureCostrel(s) must be easy to compute. It has to
produce a closed form, easier search and independent subproblems.

• Good enough approximation: the heuristic h(s) should be close to FutureCost(s) and we
have thus to not remove too many constraints.

Stanford University

Afshine Amidi & Shervine Amidi

� Max heuristic – Let h1(s), h2(s) be two heuristics. We have the following property:

h1(s), h2(s) consistent =⇒ h(s) = max{h1(s), h2(s)} consistent

2.2 Markov decision processes

In this section, we assume that performing action a from state s can lead to several states s′
1,s′

2,...
in a probabilistic manner. In order to find our way between an initial state and an end state,
our objective will be to find the maximum value policy by using Markov decision processes that
help us cope with randomness and uncertainty.

2.2.1 Notations

� Definition – The objective of a Markov decision process is to maximize rewards. It is defined
with:

• a starting state sstart

• possible actions Actions(s) from state s

• transition probabilities T (s,a,s′) from s to s′ with action a

• rewards Reward(s,a,s′) from s to s′ with action a

• whether an end state was reached IsEnd(s)

• a discount factor 0 � γ � 1

� Transition probabilities – The transition probability T (s,a,s′) specifies the probability
of going to state s′ after action a is taken in state s. Each s′ 	→ T (s,a,s′) is a probability
distribution, which means that:

∀s,a,
∑

s′∈ States

T (s,a,s′) = 1

� Policy – A policy π is a function that maps each state s to an action a, i.e.
π : s 	→ a

� Utility – The utility of a path (s0, ..., sk) is the discounted sum of the rewards on that path.
In other words,

Spring 2019

CS 221 – Artificial Intelligence

u(s0,...,sk) =
k∑

i=1

riγ
i−1

Remark: the figure above is an illustration of the case k = 4.

� Q-value – The Q-value of a policy π by taking action a from state s, also noted Qπ(s,a), is
the expected utility of taking action a from state s and then following policy π. It is defined as
follows:

Qπ(s,a) =
∑

s′∈ States

T (s,a,s′)
[
Reward(s,a,s′) + γVπ(s′)

]
� Value of a policy – The value of a policy π from state s, also noted Vπ(s), is the expected
utility by following policy π from state s over random paths. It is defined as follows:

Vπ(s) = Qπ(s,π(s))

Remark: Vπ(s) is equal to 0 if s is an end state.

2.2.2 Applications

� Policy evaluation – Given a policy π, policy evaluation is an iterative algorithm that com-
putes Vπ . It is done as follows:

• Initialization: for all states s, we have

V
(0)

π (s) ←− 0

• Iteration: for t from 1 to TPE, we have

∀s, V
(t)

π (s) ←− Q
(t−1)
π (s,π(s))

with

Q
(t−1)
π (s,π(s)) =

∑
s′∈ States

T (s,π(s),s′)
[

Reward(s,π(s),s′) + γV
(t−1)

π (s′)
]

Remark: by noting S the number of states, A the number of actions per state, S′ the number
of successors and T the number of iterations, then the time complexity is of O(TPESS′).

� Optimal Q-value – The optimal Q-value Qopt(s,a) of state s with action a is defined to be
the maximum Q-value attained by any policy starting. It is computed as follows:

Stanford University

Afshine Amidi & Shervine Amidi

Qopt(s,a) =
∑

s′∈ States

T (s,a,s′)
[
Reward(s,a,s′) + γVopt(s′)

]
� Optimal value – The optimal value Vopt(s) of state s is defined as being the maximum value
attained by any policy. It is computed as follows:

Vopt(s) = max
a∈ Actions(s)

Qopt(s,a)

� Optimal policy – The optimal policy πopt is defined as being the policy that leads to the
optimal values. It is defined by:

∀s, πopt(s) = argmax
a∈ Actions(s)

Qopt(s,a)

� Value iteration – Value iteration is an algorithm that finds the optimal value Vopt as well
as the optimal policy πopt. It is done as follows:

• Initialization: for all states s, we have

V
(0)

opt (s) ←− 0

• Iteration: for t from 1 to TVI, we have

∀s, V
(t)

opt(s) ←− max
a∈ Actions(s)

Q
(t−1)
opt (s,a)

with

Q
(t−1)
opt (s,a) =

∑
s′∈ States

T (s,a,s′)
[

Reward(s,a,s′) + γV
(t−1)

opt (s′)
]

Remark: if we have either γ < 1 or the MDP graph being acyclic, then the value iteration
algorithm is guaranteed to converge to the correct answer.

2.2.3 When unknown transitions and rewards

Now, let’s assume that the transition probabilities and the rewards are unknown.

� Model-based Monte Carlo – The model-based Monte Carlo method aims at estimating
T (s,a,s′) and Reward(s,a,s′) using Monte Carlo simulation with:

T̂ (s,a,s′) =
times (s,a,s′) occurs

times (s,a) occurs

and

R̂eward(s,a,s′) = r in (s,a,r,s′)

These estimations will be then used to deduce Q-values, including Qπ and Qopt.

Spring 2019

CS 221 – Artificial Intelligence

Remark: model-based Monte Carlo is said to be off-policy, because the estimation does not
depend on the exact policy.

� Model-free Monte Carlo – The model-free Monte Carlo method aims at directly estimating
Qπ , as follows:

Q̂π(s,a) = average of ut where st−1 = s, at = a

where ut denotes the utility starting at step t of a given episode.
Remark: model-free Monte Carlo is said to be on-policy, because the estimated value is dependent
on the policy π used to generate the data.

� Equivalent formulation – By introducing the constant η = 1
1+(#updates to (s,a)) and for

each (s,a,u) of the training set, the update rule of model-free Monte Carlo has a convex combi-
nation formulation:

Q̂π(s,a) ← (1 − η)Q̂π(s,a) + ηu

as well as a stochastic gradient formulation:

Q̂π(s,a) ← Q̂π(s,a) − η(Q̂π(s,a) − u)

� SARSA – State-action-reward-state-action (SARSA) is a boostrapping method estimating
Qπ by using both raw data and estimates as part of the update rule. For each (s,a,r,s′,a′), we
have:

Q̂π(s,a) ←− (1 − η)Q̂π(s,a) + η

[
r + γQ̂π(s′,a′)

]
Remark: the SARSA estimate is updated on the fly as opposed to the model-free Monte Carlo
one where the estimate can only be updated at the end of the episode.

� Q-learning – Q-learning is an off-policy algorithm that produces an estimate for Qopt. On
each (s,a,r,s′,a′), we have:

Q̂opt(s,a) ← (1 − η)Q̂opt(s,a) + η

[
r + γ max

a′∈ Actions(s′)
Q̂opt(s′,a′)

]
� Epsilon-greedy – The epsilon-greedy policy is an algorithm that balances exploration with
probability ε and exploitation with probability 1 − ε. For a given state s, the policy πact is
computed as follows:

πact(s) =

{
argmax

a∈ Actions
Q̂opt(s,a) with proba 1 − ε

random from Actions(s) with proba ε

2.3 Game playing

In games (e.g. chess, backgammon, Go), other agents are present and need to be taken into
account when constructing our policy.

� Game tree – A game tree is a tree that describes the possibilities of a game. In particular,
each node is a decision point for a player and each root-to-leaf path is a possible outcome of the
game.

� Two-player zero-sum game – It is a game where each state is fully observed and such that
players take turns. It is defined with:

Stanford University

Afshine Amidi & Shervine Amidi

• a starting state sstart

• possible actions Actions(s) from state s

• successors Succ(s,a) from states s with actions a

• whether an end state was reached IsEnd(s)

• the agent’s utility Utility(s) at end state s

• the player Player(s) who controls state s

Remark: we will assume that the utility of the agent has the opposite sign of the one of the
opponent.

� Types of policies – There are two types of policies:

• Deterministic policies, noted πp(s), which are actions that player p takes in state s.

• Stochastic policies, noted πp(s,a) ∈ [0,1], which are probabilities that player p takes action
a in state s.

� Expectimax – For a given state s, the expectimax value Vexptmax(s) is the maximum expected
utility of any agent policy when playing with respect to a fixed and known opponent policy πopp.
It is computed as follows:

Vexptmax(s) =

⎧⎪⎪⎨⎪⎪⎩
Utility(s) IsEnd(s)

max
a∈Actions(s)

Vexptmax(Succ(s,a)) Player(s) = agent∑
a∈Actions(s)

πopp(s,a)Vexptmax(Succ(s,a)) Player(s) = opp

Remark: expectimax is the analog of value iteration for MDPs.

� Minimax – The goal of minimax policies is to find an optimal policy against an adversary
by assuming the worst case, i.e. that the opponent is doing everything to minimize the agent’s
utility. It is done as follows:

Vminimax(s) =

⎧⎨⎩
Utility(s) IsEnd(s)

max
a∈Actions(s)

Vminimax(Succ(s,a)) Player(s) = agent

min
a∈Actions(s)

Vminimax(Succ(s,a)) Player(s) = opp

Spring 2019

CS 221 – Artificial Intelligence

Remark: we can extract πmax and πmin from the minimax value Vminimax.

� Minimax properties – By noting V the value function, there are 3 properties around
minimax to have in mind:

• Property 1 : if the agent were to change its policy to any πagent, then the agent would be
no better off.

∀πagent, V (πmax,πmin) � V (πagent,πmin)

• Property 2 : if the opponent changes its policy from πmin to πopp, then he will be no
better off.

∀πopp, V (πmax,πmin) � V (πmax,πopp)

• Property 3 : if the opponent is known to be not playing the adversarial policy, then the
minimax policy might not be optimal for the agent.

∀π, V (πmax,π) � V (πexptmax,π)

In the end, we have the following relationship:

V (πexptmax,πmin) � V (πmax,πmin) � V (πmax,π) � V (πexptmax,π)

2.3.1 Speeding up minimax

� Evaluation function – An evaluation function is a domain-specific and approximate estimate
of the value Vminimax(s). It is noted Eval(s).

Remark: FutureCost(s) is an analogy for search problems.

� Alpha-beta pruning – Alpha-beta pruning is a domain-general exact method optimizing
the minimax algorithm by avoiding the unnecessary exploration of parts of the game tree. To do
so, each player keeps track of the best value they can hope for (stored in α for the maximizing
player and in β for the minimizing player). At a given step, the condition β < α means that the
optimal path is not going to be in the current branch as the earlier player had a better option
at their disposal.

Stanford University

Afshine Amidi & Shervine Amidi

� TD learning – Temporal difference (TD) learning is used when we don’t know the transi-
tions/rewards. The value is based on exploration policy. To be able to use it, we need to know
rules of the game Succ(s,a). For each (s,a,r,s′), the update is done as follows:

w ←− w − η
[
V (s,w) − (r + γV (s′,w))

]
∇wV (s,w)

2.3.2 Simultaneous games

This is the contrary of turn-based games, where there is no ordering on the player’s moves.

� Single-move simultaneous game – Let there be two players A and B, with given possible
actions. We note V (a,b) to be A’s utility if A chooses action a, B chooses action b. V is called
the payoff matrix.

� Strategies – There are two main types of strategies:

• A pure strategy is a single action:

a ∈ Actions

• A mixed strategy is a probability distribution over actions:

∀a ∈ Actions, 0 � π(a) � 1

� Game evaluation – The value of the game V (πA,πB) when player A follows πA and player
B follows πB is such that:

V (πA,πB) =
∑
a,b

πA(a)πB(b)V (a,b)

� Minimax theorem – By noting πA,πB ranging over mixed strategies, for every simultaneous
two-player zero-sum game with a finite number of actions, we have:

max
πA

min
πB

V (πA,πB) = min
πB

max
πA

V (πA,πB)

Spring 2019

CS 221 – Artificial Intelligence

2.3.3 Non-zero-sum games

� Payoff matrix – We define Vp(πA,πB) to be the utility for player p.

� Nash equilibrium – A Nash equilibrium is (π∗
A,π∗

B) such that no player has an incentive to
change its strategy. We have:

∀πA, VA(π∗
A,π∗

B) � VA(πA,π∗
B) and ∀πB , VB(π∗

A,π∗
B) � VB(π∗

A,πB)

Remark: in any finite-player game with finite number of actions, there exists at least one Nash
equilibrium.

Stanford University

Afshine Amidi & Shervine Amidi

3 Variables-based models

3.1 Constraint satisfaction problems

In this section, our objective is to find maximum weight assignments of variable-based models.
One advantage compared to states-based models is that these algorithms are more convenient
to encode problem-specific constraints.

3.1.1 Factor graphs

� Definition – A factor graph, also referred to as a Markov random field, is a set of variables
X = (X1,...,Xn) where Xi ∈ Domaini and m factors f1,...,fm with each fj(X) � 0.

� Scope and arity – The scope of a factor fj is the set of variables it depends on. The size of
this set is called the arity.
Remark: factors of arity 1 and 2 are called unary and binary respectively.

� Assignment weight – Each assignment x = (x1,...,xn) yields a weight Weight(x) defined as
being the product of all factors fj applied to that assignment. Its expression is given by:

Weight(x) =
m∏

j=1

fj(x)

� Constraint satisfaction problem – A constraint satisfaction problem (CSP) is a factor
graph where all factors are binary; we call them to be constraints:

∀j ∈ [[1,m]], fj(x) ∈ {0,1}

Here, the constraint j with assignment x is said to be satisfied if and only if fj(x) = 1.

� Consistent assignment – An assignment x of a CSP is said to be consistent if and only if
Weight(x) = 1, i.e. all constraints are satisfied.

3.1.2 Dynamic ordering

� Dependent factors – The set of dependent factors of variable Xi with partial assignment x
is called D(x,Xi), and denotes the set of factors that link Xi to already assigned variables.

Spring 2019

CS 221 – Artificial Intelligence

� Backtracking search – Backtracking search is an algorithm used to find maximum weight
assignments of a factor graph. At each step, it chooses an unassigned variable and explores
its values by recursion. Dynamic ordering (i.e. choice of variables and values) and lookahead
(i.e. early elimination of inconsistent options) can be used to explore the graph more efficiently,
although the worst-case runtime stays exponential: O(|Domain|n).

� Forward checking – It is a one-step lookahead heuristic that preemptively removes incon-
sistent values from the domains of neighboring variables. It has the following characteristics:

• After assigning a variable Xi, it eliminates inconsistent values from the domains of all its
neighbors.

• If any of these domains becomes empty, we stop the local backtracking search.

• If we un-assign a variable Xi, we have to restore the domain of its neighbors.

� Most constrained variable – It is a variable-level ordering heuristic that selects the next
unassigned variable that has the fewest consistent values. This has the effect of making incon-
sistent assignments to fail earlier in the search, which enables more efficient pruning.

� Least constrained value – It is a value-level ordering heuristic that assigns the next value
that yields the highest number of consistent values of neighboring variables. Intuitively, this
procedure chooses first the values that are most likely to work.
Remark: in practice, this heuristic is useful when all factors are constraints.

The example above is an illustration of the 3-color problem with backtracking search coupled
with most constrained variable exploration and least constrained value heuristic, as well as
forward checking at each step.

� Arc consistency – We say that arc consistency of variable Xl with respect to Xk is enforced
when for each xl ∈ Domainl:

• unary factors of Xl are non-zero,

• there exists at least one xk ∈ Domaink such that any factor between Xl and Xk is
non-zero.

� AC-3 – The AC-3 algorithm is a multi-step lookahead heuristic that applies forward checking
to all relevant variables. After a given assignment, it performs forward checking and then
successively enforces arc consistency with respect to the neighbors of variables for which the
domain change during the process.
Remark: AC-3 can be implemented both iteratively and recursively.

Stanford University

Afshine Amidi & Shervine Amidi

3.1.3 Approximate methods

� Beam search – Beam search is an approximate algorithm that extends partial assignments
of n variables of branching factor b = |Domain| by exploring the K top paths at each step. The
beam size K ∈ {1,...,bn} controls the tradeoff between efficiency and accuracy. This algorithm
has a time complexity of O(n · Kb log(Kb)).
The example below illustrates a possible beam search of parameters K = 2, b = 3 and n = 5.

Remark: K = 1 corresponds to greedy search whereas K → +∞ is equivalent to BFS tree search.

� Iterated conditional modes – Iterated conditional modes (ICM) is an iterative approximate
algorithm that modifies the assignment of a factor graph one variable at a time until convergence.
At step i, we assign to Xi the value v that maximizes the product of all factors connected to
that variable.
Remark: ICM may get stuck in local minima.

� Gibbs sampling – Gibbs sampling is an iterative approximate method that modifies the
assignment of a factor graph one variable at a time until convergence. At step i:

• we assign to each element u ∈ Domaini a weight w(u) that is the product of all factors
connected to that variable,

• we sample v from the probability distribution induced by w and assign it to Xi.

Remark: Gibbs sampling can be seen as the probabilistic counterpart of ICM. It has the advan-
tage to be able to escape local minima in most cases.

3.1.4 Factor graph transformations

� Independence – Let A,B be a partitioning of the variables X. We say that A and B are
independent if there are no edges between A and B and we write:

A,B independent ⇐⇒ A ⊥⊥ B

Remark: independence is the key property that allows us to solve subproblems in parallel.

� Conditional independence – We say that A and B are conditionally independent given C
if conditioning on C produces a graph in which A and B are independent. In this case, it is
written:

Spring 2019

CS 221 – Artificial Intelligence

A and B cond. indep. given C ⇐⇒ A ⊥⊥ B|C

� Conditioning – Conditioning is a transformation aiming at making variables independent
that breaks up a factor graph into smaller pieces that can be solved in parallel and can use
backtracking. In order to condition on a variable Xi = v, we do as follows:

• Consider all factors f1,...,fk that depend on Xi

• Remove Xi and f1,...,fk

• Add gj(x) for j ∈ {1,...,k} defined as:

gj(x) = fj(x ∪ {Xi : v})

� Markov blanket – Let A ⊆ X be a subset of variables. We define MarkovBlanket(A) to be
the neighbors of A that are not in A.

� Proposition – Let C = MarkovBlanket(A) and B = X\(A ∪ C). Then we have:

A ⊥⊥ B|C

� Elimination – Elimination is a factor graph transformation that removes Xi from the graph
and solves a small subproblem conditioned on its Markov blanket as follows:

• Consider all factors fi,1,...,fi,k that depend on Xi

• Remove Xi and fi,1,...,fi,k

• Add fnew,i(x) defined as:

fnew,i(x) = max
xi

k∏
l=1

fi,l(x)

� Treewidth – The treewidth of a factor graph is the maximum arity of any factor created by
variable elimination with the best variable ordering. In other words,

Treewidth = min
orderings

max
i∈{1,...,n}

arity(fnew,i)

The example below illustrates the case of a factor graph of treewidth 3.

Stanford University

Afshine Amidi & Shervine Amidi

Remark: finding the best variable ordering is a NP-hard problem.

3.2 Bayesian networks

In this section, our goal will be to compute conditional probabilities. What is the probability of
a query given evidence?

3.2.1 Introduction

� Explaining away – Suppose causes C1 and C2 influence an effect E. Conditioning on the
effect E and on one of the causes (say C1) changes the probability of the other cause (say C2).
In this case, we say that C1 has explained away C2.

� Directed acyclic graph – A directed acyclic graph (DAG) is a finite directed graph with
no directed cycles.

� Bayesian network – A Bayesian network is a directed acyclic graph (DAG) that specifies
a joint distribution over random variables X = (X1,...,Xn) as a product of local conditional
distributions, one for each node:

P (X1 = x1,...,Xn = xn) �
n∏

i=1

p(xi|xParents(i))

Remark: Bayesian networks are factor graphs imbued with the language of probability.

� Locally normalized – For each xParents(i), all factors are local conditional distributions.
Hence they have to satisfy:

Spring 2019

CS 221 – Artificial Intelligence

∑
xi

p(xi|xParents(i)) = 1

As a result, sub-Bayesian networks and conditional distributions are consistent.

Remark: local conditional distributions are the true conditional distributions.

� Marginalization – The marginalization of a leaf node yields a Bayesian network without
that node.

3.2.2 Probabilistic programs

� Concept – A probabilistic program randomizes variables assignment. That way, we can write
down complex Bayesian networks that generate assignments without us having to explicitly
specify associated probabilities.

Remark: examples of probabilistic programs include Hidden Markov model (HMM), factorial
HMM, naive Bayes, latent Dirichlet allocation, diseases and symptoms and stochastic block
models.

� Summary – The table below summarizes the common probabilistic programs as well as their
applications:

Program Algorithm Illustration Example

Markov Model Xi ∼ p(Xi|Xi−1)
Language
modeling

Hidden Markov
Model (HMM)

Ht ∼ p(Ht|Ht−1)
Et ∼ p(Et|Ht)

Object tracking

Stanford University

Afshine Amidi & Shervine Amidi

Factorial HMM
Ho

t ∼
o∈{a,b}

p(Ho
t |Ho

t−1)

Et ∼ p(Et|Ha
t ,Hb

t)

Multiple object
tracking

Naive Bayes
Y ∼ p(Y)
Wi ∼ p(Wi|Y)

Document
classification

Latent Dirichlet
Allocation (LDA)

α ∈ RK distribution
Zi ∼ p(Zi|α)
Wi ∼ p(Wi|Zi)

Topic modeling

3.2.3 Inference

� General probabilistic inference strategy – The strategy to compute the probability
P (Q|E = e) of query Q given evidence E = e is as follows:

• Step 1: Remove variables that are not ancestors of the query Q or the evidence E by
marginalization

• Step 2: Convert Bayesian network to factor graph

• Step 3: Condition on the evidence E = e

• Step 4: Remove nodes disconnected from the query Q by marginalization

• Step 5: Run probabilistic inference algorithm (manual, variable elimination, Gibbs sam-
pling, particle filtering)

� Forward-backward algorithm – This algorithm computes the exact value of P (H = hk|E =
e) (smoothing query) for any k ∈ {1, ..., L} in the case of an HMM of size L. To do so, we proceed
in 3 steps:

• Step 1: for i ∈ {1,..., L}, compute Fi(hi) =
∑

hi−1
Fi−1(hi−1)p(hi|hi−1)p(ei|hi)

• Step 2: for i ∈ {L,..., 1}, compute Bi(hi) =
∑

hi+1
Bi+1(hi+1)p(hi+1|hi)p(ei+1|hi+1)

• Step 3: for i ∈ {1,...,L}, compute Si(hi) = Fi(hi)Bi(hi)∑
hi

Fi(hi)Bi(hi)

Spring 2019

CS 221 – Artificial Intelligence

with the convention F0 = BL+1 = 1. From this procedure and these notations, we get that

P (H = hk|E = e) = Sk(hk)

Remark: this algorithm interprets each assignment to be a path where each edge hi−1 → hi is
of weight p(hi|hi−1)p(ei|hi).

� Gibbs sampling – This algorithm is an iterative approximate method that uses a small set of
assignments (particles) to represent a large probability distribution. From a random assignment
x, Gibbs sampling performs the following steps for i ∈ {1,...,n} until convergence:

• For all u ∈ Domaini, compute the weight w(u) of assignment x where Xi = u

• Sample v from the probability distribution induced by w: v ∼ P (Xi = v|X−i = x−i)

• Set Xi = v

Remark: X−i denotes X\{Xi} and x−i represents the corresponding assignment.

� Particle filtering – This algorithm approximates the posterior density of state variables
given the evidence of observation variables by keeping track of K particles at a time. Starting
from a set of particles C of size K, we run the following 3 steps iteratively:

• Step 1: proposal - For each old particle xt−1 ∈ C, sample x from the transition probability
distribution p(x|xt−1) and add x to a set C′.

• Step 2: weighting - Weigh each x of the set C′ by w(x) = p(et|x), where et is the evidence
observed at time t.

• Step 3: resampling - Sample K elements from the set C′ using the probability distribution
induced by w and store them in C: these are the current particles xt.

Remark: a more expensive version of this algorithm also keeps track of past particles in the
proposal step.

� Maximum likelihood – If we don’t know the local conditional distributions, we can learn
them using maximum likelihood.

max
θ

∏
x∈Dtrain

p(X = x; θ)

� Laplace smoothing – For each distribution d and partial assignment (xParents(i),xi), add λ

to countd(xParents(i),xi), then normalize to get probability estimates.

� Algorithm – The Expectation-Maximization (EM) algorithm gives an efficient method at
estimating the parameter θ through maximum likelihood estimation by repeatedly constructing
a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

• E-step: Evaluate the posterior probability q(h) that each data point e came from a
particular cluster h as follows:

q(h) = P (H = h|E = e; θ)

• M-step: Use the posterior probabilities q(h) as cluster specific weights on data points e

to determine θ through maximum likelihood.

Stanford University

Afshine Amidi & Shervine Amidi

4 Logic-based models

4.1 Basics

� Syntax of propositional logic – By noting f,g formulas, and ¬, ∧, ∨, →, ↔ connectives, we
can write the following logical expressions:

Name Symbol Meaning Illustration

Affirmation f f

Negation ¬f not f

Conjunction f ∧ g f and g

Disjunction f ∨ g f or g

Implication f → g if f then g

Biconditional f ↔ g f , that is to say g

Remark: formulas can be built up recursively out of these connectives.

� Model – A model w denotes an assignment of binary weights to propositional symbols.
Example: the set of truth values w = {A : 0,B : 1,C : 0} is one possible model to the propositional
symbols A, B and C.

� Interpretation function – The interpretation function I(f,w) outputs whether model w
satisfies formula f :

I(f,w) ∈ {0,1}

� Set of models – M(f) denotes the set of models w that satisfy formula f . Mathematically
speaking, we define it as follows:

Spring 2019

CS 221 – Artificial Intelligence

∀w ∈ M(f), I(f,w) = 1

4.2 Knowledge base

� Definition – The knowledge base KB is the conjunction of all formulas that have been
considered so far. The set of models of the knowledge base is the intersection of the set of
models that satisfy each formula. In other words:

M(KB) =
⋂

f∈KB

M(f)

� Probabilistic interpretation – The probability that query f is evaluated to 1 can be seen
as the proportion of models w of the knowledge base KB that satisfy f , i.e.:

P (f |KB) =

∑
w∈M(KB)∩M(f)

P (W = w)∑
w∈M(KB)

P (W = w)

� Satisfiability – The knowledge base KB is said to be satisfiable if at least one model w
satisfies all its constraints. In other words:

KB satisfiable ⇐⇒ M(KB) �= ∅

Remark: M(KB) denotes the set of models compatible with all the constraints of the knowledge
base.

� Relation between formulas and knowledge base – We define the following properties
between the knowledge base KB and a new formula f :

Stanford University

Afshine Amidi & Shervine Amidi

Name Mathematical formulation Illustration Notes

KB
entails f

M(KB) ∩ M(f) = M(KB)
- f does not bring any
new information
- Also written KB |= f

KB
contradicts f

M(KB) ∩ M(f) = ∅

- No model satisfies
the constraints after
adding f

Equivalent to KB |= ¬f

f contingent
to KB

M(KB) ∩ M(f) �= ∅

and
M(KB) ∩ M(f) �= M(KB)

- f does not contradict
KB
- f adds a non-trivial
amount of information
to KB

� Model checking – A model checking algorithm takes as input a knowledge base KB and
outputs whether it is satisfiable or not.
Remark: popular model checking algorithms include DPLL and WalkSat.

� Inference rule – An inference rule of premises f1,...,fk and conclusion g is written:

f1,...,fk

g

� Forward inference algorithm – From a set of inference rules Rules, this algorithm goes
through all possible f1,...,fk and adds g to the knowledge base KB if a matching rule exists.
This process is repeated until no more additions can be made to KB.

� Derivation – We say that KB derives f (written KB � f) with rules Rules if f already is in
KB or gets added during the forward inference algorithm using the set of rules Rules.

� Properties of inference rules – A set of inference rules Rules can have the following
properties:

Name Mathematical formulation Notes

Soundness {f : KB � f} ⊆ {f : KB |= f}
- Inferred formulas are entailed by
KB
- Can be checked one rule at a time
- "Nothing but the truth"

Completeness {f : KB � f} ⊇ {f : KB |= f}
- Formulas entailing KB are either
already in the knowledge base or
inferred from it
- "The whole truth"

Spring 2019

CS 221 – Artificial Intelligence

4.3 Propositional logic

In this section, we will go through logic-based models that use logical formulas and inference
rules. The idea here is to balance expressivity and computational efficiency.

� Horn clause – By noting p1,...,pk and q propositional symbols, a Horn clause has the form:

(p1 ∧ ... ∧ pk) −→ q

Remark: when q = false, it is called a "goal clause", otherwise we denote it as a "definite
clause".

� Modus ponens inference rule – For propositional symbols f1,...,fk and p, the modus
ponens rule is written:

f1,...,fk, (f1 ∧ ... ∧ fk) −→ p

p

Remark: it takes linear time to apply this rule, as each application generate a clause that
contains a single propositional symbol.

� Completeness – Modus ponens is complete with respect to Horn clauses if we suppose that
KB contains only Horn clauses and p is an entailed propositional symbol. Applying modus
ponens will then derive p.

� Conjunctive normal form – A conjunctive normal form (CNF) formula is a conjunction of
clauses, where each clause is a disjunction of atomic formulas.
Remark: in other words, CNFs are ∧ of ∨.

� Equivalent representation – Every formula in propositional logic can be written into an
equivalent CNF formula. The table below presents general conversion properties:

Rule name Initial Converted

Eliminate

↔ f ↔ g (f → g) ∧ (g → f)

→ f → g ¬f ∨ g

¬¬ ¬¬f f

Distribute

¬ over ∧ ¬(f ∧ g) ¬f ∨ ¬g

¬ over ∨ ¬(f ∨ g) ¬f ∧ ¬g

∨ over ∧ f ∨ (g ∧ h) (f ∨ g) ∧ (f ∨ h)

� Resolution inference rule – For propositional symbols f1,...,fn, and g1,...,gm as well as p,
the resolution rule is written:

f1 ∨ ... ∨ fn ∨ p, ¬p ∨ g1 ∨ ... ∨ gm

f1 ∨ ... ∨ fn ∨ g1 ∨ ... ∨ gm

Remark: it can take exponential time to apply this rule, as each application generates a clause
that has a subset of the propositional symbols.

� Resolution-based inference – The resolution-based inference algorithm follows the follow-
ing steps:

• Step 1: Convert all formulas into CNF

Stanford University

Afshine Amidi & Shervine Amidi

• Step 2: Repeatedly apply resolution rule

• Step 3: Return unsatisfiable if and only if False is derived

4.4 First-order logic

The idea here is that variables yield compact knowledge representations.

� Model – A model w in first-order logic maps:

• constant symbols to objects

• predicate symbols to tuple of objects

� Horn clause – By noting x1,...,xn variables and a1,...,ak,b atomic formulas, the first-order
logic version of a horn clause has the form:

∀x1,...,∀xn, (a1 ∧ ... ∧ ak) → b

� Substitution – A substitution θ maps variables to terms and Subst(θ,f) denotes the result
of substitution θ on f .

� Unification – Unification takes two formulas f and g and returns the most general substitu-
tion θ that makes them equal:

Unify[f,g] = θ s.t. Subst[θ,f] = Subst[θ,g]

Note: Unify[f,g] returns Fail if no such θ exists.

� Modus ponens – By noting x1,...,xn variables, a1,...,ak and a′
1,...,a′

k atomic formulas and
by calling θ = Unify(a′

1 ∧ ... ∧ a′
k, a1 ∧ ... ∧ ak) the first-order logic version of modus ponens can

be written:

a′
1,...,a′

k ∀x1,...,∀xn(a1 ∧ ... ∧ ak) → b

Subst[θ, b]

� Completeness – Modus ponens is complete for first-order logic with only Horn clauses.

� Resolution rule – By noting f1, ..., fn, g1, ..., gm, p, q formulas and by calling θ = Unify(p,q),
the first-order logic version of the resolution rule can be written:

f1 ∨ ... ∨ fn ∨ p, ¬q ∨ g1 ∨ ... ∨ gm

Subst[θ,f1 ∨ ... ∨ fn ∨ g1 ∨ ... ∨ gm]

� Semi-decidability – First-order logic, even restricted to only Horn clauses, is semi-decidable.

• if KB |= f , forward inference on complete inference rules will prove f in finite time

• if KB �|= f , no algorithm can show this in finite time

Spring 2019

