
Ambient Intelligence
Course by A. Sgorbissa

Notes by D. Lanza, A. Grillo & A. Ghiotto

EMARO+ M2

2019-2020

https://rubrica.unige.it/personale/UkNHWlJp
mailto:davidel96@hotmail.it
mailto:albogrillo@gmail.com
mailto:alberto.ghiotto@hotmail.it

0.0 0.0.0

Outline

Ambient Intelligence presupposes the presence of a certain number of devices (sensors and/or actuators)
that are integrated into the environment and capable of communicating with each other, in order to
support people in carrying out their everyday activities. The course analyzes how to design Ambient
Intelligence applications, presenting methodological and technological solutions.

The goal of the course is to enable students to understand the Ambient Intelligence computing paradigm,
which envisions a world where people (and possibly robots) are surrounded by intelligent sensors/actuators
and interfaces embedded in the everyday objects around them.

At the end of the course, the student will be able to:

• Understand the characteristics and problems of Ambient Intelligence applications, and their rela-
tionship with other areas including IoT, IA, and Robotics;

• Understand the methodologies and technological tools for the design of Ambient Intelligence appli-
cations;

• Extend the acquired knowledge to understand how to use new methodologies and tools that have
not been treated in the course;

• Apply the methodologies and tools for solving problems, in particular for the design of Ambient
Intelligence applications

Contact Antonio Sgorbissa (antonio.sgorbissa@unige.it) – www.laboratorium.dist.unige.it/ sgorbiss

Contents The teaching program will cover the following topics:

• Ambient Intelligence
– Base principles;

• Localization of people and devices
– Sensors for localization;
– Geometric approaches;
– Topological approaches;
– Probabilistic location: Particle Filter;

• Knowledge representation
- Descriptive logic;
- Ontologies: OWL and Protégé;
- SWRL rules;
- Bayesian Networks and Hidden Markov Models

• Context and Context Awareness
- The Context Toolkit;
- Context Awareness with ontologies;
- Context Awareness with Bayesian Networks

• Middleware for Ambient Intelligence
• Execution of plans: AgentSpeak and Jason

References (...)

Exam The exam provides that the student is able to deal with the design of an Ambient Intelligence
application with given characteristics using the theoretical bases and programming tools learned during
the lessons and exercises. The final grade results from the composition of “continuous assessment” vote
(30%) and exam grade (70%) .

ii

mailto:antonio.sgorbissa@unige.it
http://www.laboratorium.dist.unige.it/~sgorbiss

Contents

1 Ontologies & Description Logics 1
1.1 Introduction . 1
1.2 Prolegomena to ontologies . 1

1.2.1 ER Diagram . 1
1.2.2 UML diagram . 2
1.2.3 Older approaches . 2

1.3 Description Logics . 3
1.3.1 Knowledge Base . 4
1.3.2 Concepts, roles and descriptions . 5
1.3.3 DL languages . 6
1.3.4 Language expressivity vs. complexity . 7
1.3.5 Some DL examples . 7
1.3.6 Formal semantics & interpretations . 8
1.3.7 Terminological axioms . 9
1.3.8 Interpretation satisfiability . 10
1.3.9 TBox (terminology) . 11
1.3.10 ABox (world description) . 11
1.3.11 Reasoning with DL . 12

1.4 Semantic Web Technologies . 14
1.4.1 The Semantic web stack . 15
1.4.2 XML . 15
1.4.3 DTD and XML Schema . 16
1.4.4 RDF . 17
1.4.5 RDFS . 19

1.5 OWL . 20
1.5.1 OWL versions . 20
1.5.2 Classes and Individuals . 22
1.5.3 Class constructor . 22
1.5.4 Classes and individual . 24
1.5.5 Properties . 24
1.5.6 Hierarchy . 25
1.5.7 List of properties . 27
1.5.8 Property Restrictions . 28

1.6 SWRL . 29
1.6.1 Rules and axioms . 30
1.6.2 Human Readable Syntax . 31
1.6.3 The XML Concrete Syntax . 32
1.6.4 Rule assertion . 35
1.6.5 Ontology . 36

2 Sensors 37
2.1 Introduction . 37
2.2 Cameras . 37

2.2.1 Face detection / Facial expression recognition . 37
2.2.2 Person and object tracking / Body posture recognition 38

2.3 RGB-D Cameras . 38
2.3.1 Microsoft Kinect . 39

iii

0.0 CONTENTS 0.0.0 CONTENTS

2.4 Stereo Cameras . 39
2.5 Microphones . 39
2.6 Event Cameras . 39
2.7 Presence sensors . 40
2.8 RFID Antennas . 40
2.9 Laser Scanner . 41
2.10 3D laser scanner . 41
2.11 Accelerometers and gyroscopes . 42
2.12 GPS and environmental sensors . 42
2.13 Switches . 42
2.14 Artefacts . 42
2.15 Sensing Devices Classification . 43

2.15.1 Dimensions and domain of data . 44
2.15.2 Dimensional space and data processing . 44
2.15.3 A simple device . 44
2.15.4 From simple to complex devices . 46
2.15.5 Other classification methods . 46
2.15.6 Ability to localize themselves . 48

3 Self-localization 49
3.1 Introduction . 49
3.2 Geometric and topological localization . 49
3.3 Relative localization . 50

3.3.1 Relative vs. absolute localization . 50
3.3.2 Human Odometry (1) . 50
3.3.3 Euler angles . 52
3.3.4 Human Odometry (2) . 53
3.3.5 Visual Odometry . 54

3.4 Absolute localization . 55
3.4.1 Landmarks . 56
3.4.2 Trilateration . 56
3.4.3 Global Positioning System (Trilateration) . 61

3.5 Triangulation . 63
3.5.1 Microphone triangulation . 64

3.6 Statistical approaches . 65
3.6.1 Introduction . 65
3.6.2 Kalman filter . 66
3.6.3 Particle Filter . 70
3.6.4 Summary . 74

4 Context-awareness 77
4.1 What is the context? . 77

4.1.1 Categories of Context . 78
4.1.2 Context-aware computing . 78
4.1.3 Support for Building Applications . 80
4.1.4 Context toolkit . 83
4.1.5 Context Toolkit Situation Abstraction . 85
4.1.6 Context Toolkit implementation . 85

4.2 Context assessment with BN . 86
4.2.1 Bayes and joint probability tables . 86
4.2.2 Belief updating, marginal and conditional independence 88
4.2.3 Bayesian Networks . 91
4.2.4 Statistical inference with BN . 93
4.2.5 Explaining away BN . 93
4.2.6 Top-down and bottom-up reasoning in BN . 94
4.2.7 Independencies in BN . 97
4.2.8 Representation of Compact Conditional Distributions 99
4.2.9 Naive Bayesian Networks . 100
4.2.10 Learning in BN . 101

iv

0.0 CONTENTS 0.0.0 CONTENTS

4.2.11 Example of context assessment . 102
4.2.12 Dynamic Bayesian Network . 104
4.2.13 Markov Model . 105
4.2.14 Markov Processes . 106

4.3 Context awareness . 111
4.3.1 State of the art . 111
4.3.2 Description Logic Basic Principles . 111
4.3.3 System Architecture . 112
4.3.4 Offline phase: designing the TBox . 114
4.3.5 Online phase: populating the ABox . 116

5 BDI Agents 123
5.1 Introduction . 123
5.2 Procedural Reasoning System . 123
5.3 AgentSpeak . 124
5.4 Exercise . 129

6 universAAL 131
6.1 Introduction . 131
6.2 The software . 131
6.3 Middleware . 131
6.4 The three buses . 132

6.4.1 Context Bus . 132
6.4.2 Service Bus . 132
6.4.3 UI Bus . 133

6.5 Functionalities . 133
6.5.1 Layer composition . 134
6.5.2 universAAL application . 134
6.5.3 uSpace . 134

6.6 Ontological Model . 135
6.6.1 What ontologies are made of . 135
6.6.2 Context . 135
6.6.3 How context information is shared . 135
6.6.4 Services . 136

6.7 User Interaction . 137
6.8 Applications . 138

v

Chapter 1

Ontologies & Description Logics

1.1 Introduction

Similarly to robotics, people were waiting for Ambient Intelligence before technology was currently avail-
able, but the same does not happen for all technology (were people expecting mobile phones? GPS
navigators?)

What is the main goal of Ambient Intelligent technologies and in what they differs from robotics? It is
summarized by this quote by The Computer for the 21st Century ’s writer Mark Weiser:

“The most profound technologies are those that disappear.”

An example could be writing: it is ubiquitous, we don’t realize that we are using it and it’s perva-
sive and useful (not only, it’s necessary). In fact not only do books, magazines and newspapers convey
written information, but so do street signs, billboards, shop signs and even graffiti. The constant back-
ground presence of these products of “literacy technology” does not require active attention, but the
information to be conveyed is ready for use at a glance.

Silicon-based information technology, in contrast, is far from having become part of the environment.
Computers are approachable only through complex specialized skills that has nothing to do with the tasks
for which people actually use computers (the state of the art is perhaps analogous to the period when
scribes had to know as much about making ink or baking clay as they did about writing).

“ ... we are trying to conceive a new way of thinking about computers in the world, one that
takes into account the natural human environment and allows the computers themselves to
vanish into the background.”

1.2 Prolegomena to ontologies

Ontologies are used to represent knowledge and to reason upon such knowledge. An ontology is
a formal conceptualisation of the world which specifies a set of constraints and declares what should
necessarily hold in any possible world.

Given an ontology, a legal world description is a possible world satisfying the constraints.

An ontology language usually introduces concepts (aka classes, entities),properties of concepts (aka
slots, attributes, roles), associations (aka relationships) and additional constraints. Ontology languages
may be simple (e.g., having only concepts), frame-based(having only concepts and properties), or logic-
based, and can be expressed by means of diagrams.1

1.2.1 ER Diagram

The Entity-relationship diagram is used for modeling databases:
1 The Entity-Relationship conceptual data model and UML Class Diagrams can be considered as ontology languages,

even if the term “ontology” in Computer Science has been introduced more recently.

1

1.2 Prolegomena to ontologies 1.2.3 UML diagram

• Concepts are represented as rectangles;

• Relationships between concepts are represented as diamonds, possibly specifying the cardinality of
the involved concepts (e.g., each Top Manager manages exactly one Project);

• Generalizations are represented with arrows (e.g., a Manager is also an Employee);

• Concepts and relationships can have attributes (basic data types), which are inherited from parents
to children (e.g., each Employee has a Salary; a Top Manager is an Employee, and therefore it has
a Salary).

1.2.2 UML diagram

UML class diagram, used to model classes in object oriented programming, can be used in a similar way
(see the correspondences of this figure with the previous one)

1.2.3 Older approaches

Semantic networks A semantic network is a network which represents semantic relations among
concepts. Invented for computers by Richard H. Richens of the Cambridge Language Research Unit in
1956 as an “interlingua” for machine translation of natural languages. The problem is that arcs do not
make any difference between generalizations and relationships (or roles): we have a label that says that a
“Cat” is a “Mammal”, but this generalization is not expressed through a proper linguistic construct, that
is, it is not possible to infer that a “Cat” is an “Animal” from the fact that a “Cat” is a “Mammal” and a
“Mammal” is an “Animal”.

2

1.3 Description Logics 1.3.0

KL-ONE KL-ONE is a well known knowledge representation system in the tradition of semantic net-
works. The system is an attempt to overcome semantic indistinctness in semantic network representations
and to explicitly represent conceptual information as a structured inheritance network. Basic elements
in KL-ONE are called concepts. Concepts form hierarchies using subsume-relations; in the KL-ONE
terminology a super class is said to subsume its subclasses. Multiple inheritance is allowed. All concepts,
except the top concept “Thing”, must have at least one super class. The slot-concept is called roles and
the values of the roles are role-fillers. There are several different types of roles to be used in different
situations.

KL-ONE allows for making complex descriptions by composing concepts: i.e., “A vehicle with cargo
capacity 10 tons, a trailer and 18 wheels”.

KL-ONE provides a graphical representation for these structured descriptions based on a large set of
knowledge-structuring primitives, and provides tools for reasoning, for instance to check if a concept/de-
scription subsumes or not another concept/description or to find all concepts which subsumes another
concept/description.

Example: consider a vehicle with cargo capacity 10tons, a trailer and 18 wheels. What is it?

1.3 Description Logics

KL-one is an implementation of Description Logics, a formalism to introduce logic- based semantics
into knowledge-based representation systems. Description Logics can be interpreted as a subset of
first order predicate logics which guarantees efficient (polynomial time) reasoning. More recent
languages (OWL-DL and different OWL 2 profiles) still relies on DL, hence it is fundamental to study
how it works.

3

1.3 Description Logics 1.3.2 Knowledge Base

Description Logics is a logic (formal) language for describing knowledge (OWL and OWL2 are an imple-
mentation of DL). Description Logics is based on the concept of concepts (aka classes, entities) which
describe sets, and individuals (aka instances) which describe elements of the set.

DL supports inference patterns that occur in many applications of intelligent information processing
systems, which are also used by humans to structure and understand the world. We are mostly interested
in the classification of concepts and instance checking of individuals:

• Classification of concepts determines subconcept/superconcept relationships (called subsump-
tion relationships in DL) between the concepts of a given terminology

• Instance checking of individuals determines whether a given individual is always an instance
of a certain concept (i.e., whether this instance relationship is implied by the description of the
individual and the definition of the concept)

!!! The output of reasoning may trigger the application of rules that insert additional facts
into the knowledge base. !!!

1.3.1 Knowledge Base

A knowledge base (KB) comprises two components, the TBox and the Abox:

• The TBox introduces the terminology, i.e., the vocabulary of an application domain (intensional
knowledge). The vocabulary consists of concepts, which denote sets of individuals, and roles, which
denote binary relationships between individuals belonging to the involved concepts.

• The ABox contains assertions about named individuals in terms of this vocabulary (extensional
knowledge).

In addition to atomic concepts and roles (concept and role names), all DL systems allow their users to
build complex descriptions of concepts and roles. The TBox can be used to assign names to complex
descriptions.

As anticipated, a DL system not only stores terminologies and assertions, but also offers services that
reason about them.

Typical reasoning tasks for a TBox are:

• Determine whether a description is satisfiable (i.e., non-contradictory)

• Determine if one description is more general than another one, that is, whether the first subsumes
the second (when iterated over all concepts, it leads to “classification”)

Important problems for an ABox are, on the other hand:

• instance checking: find out whether the assertions in the ABox entail that a particular individual
is an instance of a given concept description

• knowledge base consistency: which amounts to verifying whether every concept in the knowledge
base admits at least one individual

• realization: which finds the most specific concept an individual object is an instance of

• retrieval: which finds the individuals in the knowledge base that are instances of a given concept

4

1.3 Description Logics 1.3.2 Concepts, roles and descriptions

1.3.2 Concepts, roles and descriptions

An atomic concept in the Tbox can be, for example,

Person

which presumably indicates the “set of all persons” (the semantic of a concept will be formally defined in
the following). An atomic role could be

hasChild

which can be used to introduce the concept of “somebody that has a child”

⇒ by using the concept Person and the role hasChild above, it is possible to describe
“somebody who is a person and has a child who is a person”

How is it possible to build complex descriptions starting from pre-existing concepts and roles? Elemen-
tary descriptions are atomic concepts and atomic roles, while complex descriptions can be built
from them inductively with concept constructors using the production rules below:

In the following notation, we use the letters A and B for atomic concepts, the letter R for
atomic roles, and the letters C and D for descriptions (which are concepts as well).

Description languages are distinguished by the linguistic constructors they provide. Concept
descriptions in AL language are formed according to the following syntax rule:

C,D → A| (atomic concept)
(context-free >| (universal concept, which subsumes every other concept)
grammar) ⊥ | (bottom concept, which is subsumed by every other concept)

¬A| (atomic negation)
C ∩D (intersection)
∀R.C| (value restriction)
∃R.> (limited existential quantification)

The rules above say, among the others, that a complex description can be iteratively built as the
intersection of two other descriptions, or by properly expressing relationships with other concepts using
roles.

The production rules in the previous slide are part of a context-free grammar. In formal language theory,
a context-free grammar (CFG) is a formal grammar in which every production rule is of the form

V → w

where V is a single nonterminal symbol, and w is a string of terminals and/or nonterminals (w can
be empty). A formal grammar is considered “context free” when its production rules can be applied
regardless of the context of a nonterminal. It does not matter which symbols the nonterminal V is
surrounded by, the single nonterminal V on the left hand side can always be replaced by the right
hand side.

What we just saw allows to iteratively build, for example, the description of

“Somebody who is a person and has a child”

starting from the atomic concept A corresponding to Person and the atomic concept role R corresponding
to hasChild:

C → ∃R.> = ∃hasChild.>

D → A ∩ C = Person ∩ ∃hasChild.>

Notice that AL does not allows to specify that the child itself must be a Person, since in AL the
existential quantifier admits only to use the superconcept > as a role descriptor (!!!). In order to

5

1.3 Description Logics 1.3.3 DL languages

define the concept of “somebody who is a person and has a child that is a person”, one needs to apply
additional rules for value restriction:2

E → ∀R.A = ∀hasChild.Person

F → D ∩ E = Person ∩ ∃hasChild.> ∩ ∀hasChild.Person

1.3.3 DL languages

There are many varieties of Description Logic and there is an informal naming convention, roughly
describing the operators allowed. The expressivity is encoded in the label for a logic starting with one of
the following basic logics:

• AL (Attributive Language) is the base language which allows:

– Atomic negation (negation of concept names that don’t appear on the left hand side of axioms)
– Concept intersection
– Universal restrictions
– Limited existential quantification

• FL (Frame based description Language) allows:

– Concept intersection
– Universal restrictions
– Limited existential quantification
– Role restriction

• EL allows:

– Concept intersection
– Existential restrictions (of full existential quantification)

Basic logics can be followed by any of the following extensions:

F – Functional properties

E – Full existential qualification (existential restrictions that have fillers other than owl:Thing)

U – Concept union

C – Complex concept negation

H – Role hierarchy (subproperties - rdfs:subPropertyOf)

R – Limited complex role inclusion axioms, reflexivity and irreflexivity, role disjointness

O – Nominals (enumerated classes of object value restrictions - owl:oneOf, owl:hasValue)

I – Inverse properties

N – Cardinality restrictions (owl:cardinality, owl:maxCardinality)

Q – Qualified cardinality restrictions (available in OWL 2, cardinality restrictions that have fillers
other than owl:Thing)

(D) – Use of datatype properties, data values or data types

As an example, ALC is a centrally important description logic from which comparisons with other varieties
can be made. ALC is simply AL with complement of any concept allowed, not just atomic concepts.

The Protégé ontology editor supports SHOIN (D) (where S is an abbreviation for ALC).
Three major biomedical informatics terminology bases, SNOMEDCT , GALEN , and GO, are expressible
in EL (with additional role properties)

2 Notice that other (more expressive) allow for a full existential quantifier. In such case (not supported by AL) it is
possible to express:

G→ Person ∩ ∃hasChild.Person
Notice that the resulting concept G is different from the previous F . In fact, the concept G does not exclude a hypothetical

person that has a child that is a person, and an additional child that is a dog. In fact, there is not a universal value
restriction on the filler of the role hasChild. On the opposite, the concept F requires that all the fillers of the role hasChild
are subconcepts of Person.

6

https://protege.stanford.edu/

1.3 Description Logics 1.3.5 Language expressivity vs. complexity

OWL 2 provides the expressiveness of SHROIQ(D), OWL-DL is based on SHOIN (D) and for OWL-Lite
it is SHIF (D).

1.3.4 Language expressivity vs. complexity

Investigating the computational complexity of a given DL with decidable inference problems is an
important issue. Decidability and complexity of the inference problems depend on the expressive
power of the DL at hand.

• On the one hand, very expressive DLs are likely to have inference problems of high complexity, or
they may even be undecidable.

• On the other hand, very weak DLs (with efficient reasoning procedures) may not be sufficiently
expressive to represent the important concepts of a given application.

The Barber paradox supposes a barber who shaves all men if and only if they do not shave themselves
(Russel Paradox). Does the barber shave himself? In First order logics:

(∃x)

(
man(x) ∧ (∀y)

(
man(y)→

(
shaves(x, y)↔ ¬shaves(y, y)

)))

This sentence is unsatisfiable (a contradiction) because of the universal quantifier: by assigning the
value x to y, this yields the contradiction:(

shaves(x, x)↔ ¬shaves(x, x)

)
This kind of contradiction emerges from the expressivenes of the language, e.g., the concept of “the set
of all normal sets”.3 It can be a good idea to limit expressiveness to avoid these problems.

1.3.5 Some DL examples

Let us see other examples, by adding the atomic concept

Female

The persons that are female can be described as

Person ∩ Female

The people that are not female can be described as

Person ∩ ¬Female

The people whose children (if any) are all female (it does not mean that the person has children...) can
be described as

Person ∩ ∀hasChild.Female

The people that have children, and whose children are all female can be described as

Person ∩ ∀hasChild.Female ∩ ∃hasChild.>
3 If you are interested to know about Russel’s paradox in its original formulation:
Let start by calling a set “abnormal” if it is a member of itself, and “normal” otherwise. For example, take the set of

all squares. That set is not itself a square, and therefore is not a member of the set of all squares. So it is “normal”. On the
other hand, if we take the complementary set that contains all non-squares, that set is itself not a square and so should be
one of its own members. It is abnormal.

Now we consider the set of all normal sets, R. Attempting to determine whether R is normal or abnormal is impossible:
if R were a normal set, it would be contained in the set of normal sets (itself), and therefore be abnormal; if R were an
abnormal set, it would not be contained in the set of normal sets (itself), and therefore be normal. This leads to the
conclusion that R is both normal and abnormal.

7

https://www.w3.org/TR/owl2-overview/
https://en.wikipedia.org/wiki/Web_Ontology_Language#OWL_DL
http://www.standard-du-web.com/owl-lite.php

1.3 Description Logics 1.3.6 Formal semantics & interpretations

The people that do not have children

Person ∩ ∀hasChild. ⊥

As anticipated, additional constructors can be available (not in AL).4

1.3.6 Formal semantics & interpretations

With DL it is possible to define a formal semantics. To this purpose, we consider the interpretation I,
which consists of a non-empty set ∆I (the domain of the interpretation) and an interpretation function
which assigns

• to every atomic concept A a set AI ∈ ∆I

• to every atomic role R a binary relation RI ∈ ∆I ×∆I

In the examples in the previous section we had the atomic concepts Female and Person, and the atomic
role hasChild. A possible interpretation could be the following:

∆I = {Paul, Tom, Julia, Laura,Mariah,Andrea}
PersonI = {Paul, Tom, Julia, Laura,Mariah,Andrea}
FemaleI = {Julia, Laura,Mariah}

hasChildI = {(Tom, Julia), (Julia, Laura), (Mariah,Andrea), (Mariah, Tom), (Andrea, Paul)}

Notice that the interpretation has the purpose of “anchoring” symbols (concepts and then individuals)
to their meaning in the real world: the domain of the interpretation is meant to refer to entities in
the real world. For this reason, the following interpretation could be equally valid, by assuming an
unambiguous interpretation to the sentences among braces:

∆I = {All Italian citizens}
PersonI = {All Italian citizens}
FemaleI = {All Italian citizens whose gender is female}

hasChildI = {All couples of citizens such that the 1st element of the couple is parent of the 2nd one}

A formal semantics is necessary because the names of concepts and roles are mere symbols: even if, up to
now, we have used names whose meaning (i.e., its connection to entities in the real world) is “intuitive”,
this is not required. In fact, we could define

∆I = {All Italian citizens}
X11I = {All Italian citizens}

QurtzI = {All Italian citizens whose gender is female}
CupurufucuskiI = {All couples of cit. s.t. the 1st element of the couple is parent of the 2nd one}

In this case a formal semantics is obviously required to give an interpretation to symbols.

Starting from the interpretation of atomic concepts and roles, we obviously want that the interpretation
of the two descriptions between parentheses is identical:

(Person ∩ ∀hasChild.Female)I = (X11 ∩ ∀Cupurufucuski.Qurtz)I
4 For example, cardinality restrictions, to describe “a person that has more than 2 female children” as

Person∩ ≥ 3hasChild.Female

Negation of non-atomic concepts, to describe “something that is not a person with children” as

¬(Person ∩ ∃hasChild.Person)

Union of concepts (a person that has a child or a dog)

Person ∩ (∃hasChild.Person ∪ ∃hasPet.Dog)

8

1.3 Description Logics 1.3.7 Terminological axioms

Remember that we are manipulating symbols, but – ultimately – we want to make statements
about entities in the real world!

After defining the interpretation of atomic concepts, it is necessary to define the interpretation of the
concept constructors that are used to build complex descriptions. For example, in the case of AL:

For example:

We say that two concepts are equivalent when:

C ≡ D ⇐⇒ CI = DI ∀ interpretations I

For example, let us introduce a new concept

Student

with the following interpretation:
StudentI = {Tom,Laura}

It can be verified that the following concepts are equivalent:

Person ∩ ∃hasChild.Female ∩ ∃hasChild.Student = Person ∩ ∃hasChild(Female ∩ Student)

Note: it is obviously possible that two concepts have the same interpretation

CI = DI

without being equivalent! In the case

WomanI = TeacherI

but for a different interpretation it may not hold:

∆I = {All Italian citizens}
WomanI = {Paola,Enrica}
TeacherI = {Paola,Enrica}

1.3.7 Terminological axioms

It is now possible to introduce terminological axioms, which make statements about how concepts or
roles are related to each other. There are two kind of axioms:

• Inclusions: C ⊆ D (R ⊆ S)

• Equalities: C ≡ D (R ≡ S)

9

1.3 Description Logics 1.3.9 Interpretation satisfiability

(C,D are concepts and R,S are roles)

Definitions are specific axioms (either inclusions or equalities) by which we can introduce new atomic
concepts as abbreviations or names for complex descriptions:

• Equality definition: NewName ≡ Complex Description

This is useful when we want to give a strict, detailed definition, for example:

Parent ≡ (Person ∩ ∃hasChild.T)

• Inclusion definition: NewName ⊆ Complex Description

This can be used, for example, when it is not possible or convenient to give a detailed definition,
for example:

Father ⊆ (Person ∩ ∃hasChild.T)

Considering the last example, we can see how it would be possible to give a strict definition by assuming
the atomic concept Male:

Father ≡ (Person ∩Male ∩ ∃hasChild.T)

It is important to note as well that definitions can be iteratively used for creating new definitions:

Father ≡ (Male ∩ Parent)

1.3.8 Interpretation satisfiability

Let’s introduce now the concept of interpretation satisfiability:

• We say that an interpretation I satisfies an inclusion C ⊆ D if CI ⊆ DI .

• We say that an interpretation I satisfies an equality C ≡ D if CI = DI .

For example, consider this additional statement which integrate the previously seen interpretation:

ParentI = {Tom, Julia,Mariah,Andrea}

The resulting interpretation satisfies the equality

Parent ≡ (Person ∩ ∃hasChild.>)

because it can be verified that it holds

ParentI = (Person ∩ ∃hasChild.>)I

If T is a set of axioms, then I satisfies T if and only if I satisfies each element of T (we say that I is a
model for this set of axioms). Hence, to summarize:

I satisfies/is a model for T ⇔ I satisfies a, ∀ axiom a ∈ T

I satisfies C ⊆ D ⇔ CI ⊆ DI I satisfies C ≡ D ⇔ CI = DI

Two axioms or two sets of axioms are equivalent if they have the same models.

The satisfiability is a very important concept, because it checks if your set of axioms T is consistent
or if for some axioms there is not an available interpretation!

10

1.3 Description Logics 1.3.10 TBox (terminology)

1.3.9 TBox (terminology)

A set of definitions should be unequivocal: we call a finite set of definitions T a terminology or TBox if
no symbolic name is defined more than once, that is:

For every atomic concept A there is at most one axiom in T whose left-hand side is A

Also, definitions must be acyclic in the sense that concepts are neither defined in terms of themselves
nor in terms of other concepts that indirectly refer to them.

Example of a TBox:

Named symbols are often called defined concepts and base symbols primitive concepts: we expect
that the terminology ultimately defines the named symbols in terms of the base symbols.

1.3.10 ABox (world description)

The second component of a knowledge base, in addition to the terminology or TBox, is the world de-
scription or ABox. In the ABox, one describes a specific state of affairs of an application domain in
terms of concepts and roles.

!! Some of the concept and role atoms in the ABox may be defined names of the Tbox!!

In the ABox, one introduces individuals, by giving them names, and one asserts properties of these
individuals. In particular, after introducing the named individuals a and b, we can give a semantics
to the Abox by extending interpretations to individual names:

From now on an interpretation I:
– not only maps atomic concepts and roles to sets and relations
– but in addition maps each individual name a to an element aI ∈ ∆I

This is done by making the unique name assumption (UNA), that is:

a, b distinct names ⇒ aI 6= bI

Using concepts C and roles R, and by referring to the named individuals a, b, c one can make assertions
of the following two kinds in an Abox:

• Concept assertions C(a)

One states that the interpretation of a belongs to the interpretation of C(aI ∈ CI)

• Role assertions R(b; c)

One states that c is a filler of the role R for b, i.e., that (bI , cI) ∈ RI

The following example shows concepts and role assertions using concepts and roles in the Tbox (left) and a
possible interpretation of the corresponding individuals (right). Notice that we used letters A,B,C,D,E
to name individuals, instead of referring to the names Paul, Tom, Julia, Laura,Mariah,Andrea to avoid
confusion between individuals in the ABox (that, once again, are mere symbols) and their interpretation
(that refer to entities in the real worlds):

11

1.3 Description Logics 1.3.11 Reasoning with DL

Given an interpretation I we have:

[I satisfies C(a)]↔
[
aI ∈ CI

]
[I satisfies R(a, b)]↔

[
(aI , bI) ∈ RI

]
[I is a model for/satisfies the ABox A]↔ [I satisfies each assertion in A]

[I is a model for A w.r.t. the TBox T]↔ [I is a model for A ∧ I is a model for T]

1.3.11 Reasoning with DL

A knowledge representation system based on DLs is able to perform specific kinds of reasoning. As said
before, the purpose of a knowledge representation system goes beyond storing concept definitions and
assertions.

A KB (TBox and ABox) has a semantics that makes it equivalent to a set of axioms in first-order
predicate logic. Thus, like any other set of axioms, it contains implicit knowledge that can be made
explicit through inferences. For example, from the previous TBox and ABox one can conclude that the
individualM is an instance of the concept Grandmother, although this knowledge is not explicitly stated
as an assertion.

◦ Reasoning in the TBox :

• Satisfiability: A concept C is satisfiable with respect to T if there exists a model I of T such that
CI is nonempty. In this case we also say that

I (model of T) is a model of C

• Subsumption: A concept C is subsumed by a concept D with respect to T if CI ⊆ DI for every
model I of T . In this case we write

T |= C ⊆ D

• Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI for every model
I of T . In this case we write

T |= C ≡ D

Satisfiability is important, for example, to check if the Tbox is consistent. For example, assume that the
TBox includes the following definitions:

Traditionally, the basic reasoning mechanism provided by DL systems checks the subsumption of
concepts. It can be shown that this, in fact, is sufficient to implement also the other inferences.

For example, can we say the following?

Female subsumes Grandmother or T |= Grandmother ⊆ Female

It is easy to check this for every model I of T :

12

1.3 Description Logics 1.3.11 Reasoning with DL

1. To satisfy the definition

Grandmother ≡Woman ∩ ∃hasChild.Parent

the concept on the left and the concept on the right must have the same interpretation.

2. The interpretation of
Woman ∩ ∃hasChild.Parent

refers to a subset of the interpretation of Woman.

3. To satisfy the definition
Woman ≡ Person ∩ Female

the concept on the left and the concept on the right must have the same interpretation.

4. The interpretation of
Person ∩ Female

refers to a subset of the interpretation of Female.

⇒ Hence, Female subsumes Grandmother or T |= Grandmother ⊆ Female

◦ Reasoning in the ABox:

• Consistency checking: An ABox A is consistent with respect to a TBox T , if there is an inter-
pretation that is a model of both A and T . We simply say that

A is consistent ↔ A is consistent w.r.t. the empty TBox

• Instance checking: We say that an assertion a is entailed by A with respect to a TBox T if
every model of A and T also satisfies a:

A |= a w.r.t. T ↔ every model of A and T also satisfies a

Consistency checking is very important. In the following example the ABox on the right is not consistent
with respect to the TBox on the left (however, it could be consistent with respect to a different Tbox...
remember that Father and Mother are only symbols):

For example, can we say the following?

The individual M ∈ A (below) is an instance of Grandmother w.r.t. T or A |= Grandmother(M)

It is easy to check that, for every model of A and T :

13

1.4 Semantic Web Technologies 1.4.1

1. It must necessarily hold

M I ∈MotherI (M I , T I) ∈ hasChildI T I ∈ FatherI

2. Since the concept Father is subsumed by the concept Parent in the Tbox, it must necessarily hold

T I ∈ ParentI and then M I ∈ (hasChild.Parent)I

3. Since it must necessarily hold

GrandmotherI ≡ (Mother∩∃hasChild.Parent)I M I ∈MotherI M I ∈ (hasChild.Parent)I

⇒ This finally requires that
M I ∈ GrandmotherI

1.4 Semantic Web Technologies

Nowadays, ontologies play a fundamental role in the Semantic Web. Semantic Web is a group of
methods and technologies allowing machines to understand the meaning - or “semantics” - of information
on the World Wide Web. The term was coined by World Wide Web Consortium (W3C).

According to the original vision, the availability of machine-readable metadata would enable automated
agents and other software to access the Web more intelligently. Related technologies include:

• the Resource Description Framework (RDF)
• a variety of data interchange formats (e.g. RDF/XML, N3, Turtle, N-Triples)
• and notations such as RDF Schema (RDFS) and the Web Ontology Language (OWL), all of

which are intended to provide a formal description of concepts, terms, and relationships within a
given knowledge domain.

Many of the technologies proposed by the W3C already exist and are used in various projects. The
Semantic Web as a global vision, however, has remained largely unrealized and its critics have questioned
the feasibility of the approach.

“I have a dream for the Web [in which computers] become capable of analyzing all the data on
the Web – the content, links, and transactions between people and computers. A ‘Semantic
Web’, which should make this possible, has yet to emerge, but when it does, the day-to-day
mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to
machines. The ‘intelligent agents’ people have touted for ages will finally materialize.”
– Tim Berners-Lee, 1999

Web pages are written in HTML, which is very limited. It is based on the concept of “tag” and “content”:

<html>
<head>

<title > favorites / bookmark title goes here </title >
<meta name="keywords" content="shoes ,␣trousers ,␣shop">
<meta name="description" content="My␣shop">

</head>
<body bgcolor="yellow" text="blue">

 My shop <!-- ‘‘bold ’’ tag -->

 <!-- line break tag -->
Buy shoes for 56$

Buy trousers for 120$

</body>
</html>

Meta tags can be used to add information. However, there is not an easy way to describe the fact that
shoes are something that can be bought, and their price is 56$, in a way that is understandable by a
computer.

Understanding the semantics of text is a prerequisite for designing autonomous software agents!

14

1.4 Semantic Web Technologies 1.4.2 The Semantic web stack

1.4.1 The Semantic web stack

Since HTML itself is not sufficient to associate a “semantic” to text, a different approach is proposed,
which is based on a hierarchy of different languages:

→ Each language is based on the linguistic constructs made available by languages at the underlying
level:

• XML provides an elemental syntax for content structure within documents, yet associates no
semantics with the meaning of the content contained within.

XML Schema is a language for providing and restricting the structure and content of elements
contained within XML documents

It is possible to define a schema which describes HTML starting from XML.

• RDF is a simple language for expressing data models, which refer to objects ("resources") and
their relationships.

An RDF-based model can be represented in XML syntax

RDFS (RDF Schema) extends RDF and is a vocabulary for describing properties and classes of
RDF-based resources, with semantics for generalized-hierarchies of such properties and classes.

• OWL adds more vocabulary for describing properties and classes: among others, relations between
classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality, richer typing of properties,
characteristics of properties (e.g. symmetry), and enumerated classes.

SPARQL is a protocol and query language for semantic web data sources.

1.4.2 XML

XML gives more freedom that HTML, in that it separates the structure from the presentation
style. In this sense, it can be used to “structure knowledge”. However, it does not allow to provide a
“meaning” to content.

XML Key terminology:

• By definition, an XML document is a string of characters. Almost every legal Unicode character
may appear in an XML document.

• In order to structure knowlegde, the characters which make up an XML document are divided
into markup and content. Markup and content may be distinguished by the application of simple
syntactic rules.

15

1.4 Semantic Web Technologies 1.4.3 DTD and XML Schema

All strings which constitute markup either begin with the character "<" and end with a ">", or
begin with the character "&" and end with a ";".

Strings of characters which are not markup are content.

• Structured knowledge can be processed and provide the input for an application: the processor
(XML Parser) analyzes the markup and passes structured information (or part of it) to the
application.

More specifically, an XML document can be structured in the following components:

• Tag: A markup construct that begins with < and ends with >. There are three types of tags:
start-tags, end-tags, empty-element tags. For example:

start-tag: <section>
end-tag: </section>
empty-element tag: <line-break/>

• Element: A logical document component which either begins with a start-tag and ends with a
matching end-tag or consists only of an empty-element tag. The element may contain markups,
including other elements, which are called child elements. For example, the following element has
two child elements:

<section >
<title >This is the title </title>
<body>This is the body </body>

</section >

• Attribute: A markup construct consisting of a name/value pair that exists within a start-tag or
empty-element tag. In the example (below) the element section has two attributes, number and
page:

<section number="IV" page="234">

1.4.3 DTD and XML Schema

In addition to being well-formed (i.e., meaning that it satisfies a list of syntax rules provided in the spec-
ification), an XML document may be valid. This means that it contains a reference to a Document
Type Definition (DTD) and that its elements and attributes are declared in that DTD and follow
the grammatical rules for them that the DTD specifies.

A newer schema language than DTD is XML Schema, which typically constrain:

• the set of elements that may be used in a document

• which attributes may be applied to them

• the order in which they may appear

• the allowable parent/child relationships

This is an example of XML Schema definition:

<?xml version="1.0" encoding="utf -8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org /2001/

↪→ XMLSchema">
<!-- This is the element that we want to define -->
<xs:element name="Address">

<xs:complexType >
<xs:sequence >

<!-- These are the child elements it must include -->
<xs:element name="Recipient" type="xs:string" />
<xs:element name="House" type="xs:string" />
<xs:element name="Street" type="xs:string" />
<xs:element name="Town" type="xs:string" />
<xs:element name="County" type="xs:string" minOccurs="0" />
<xs:element name="PostCode" type="xs:string" />
<xs:element name="Country" minOccurs="0">

<xs:simpleType >
<xs:restriction base="xs:string">

16

1.4 Semantic Web Technologies 1.4.4 RDF

<!-- These is a restriction on the possible valuest
↪→ for Country -->

<xs:enumeration value="IN" />
<xs:enumeration value="DE" />
<xs:enumeration value="ES" />
<xs:enumeration value="UK" />
<xs:enumeration value="US" />

</xs:restriction >
</xs:simpleType >

</xs:element >
</xs:sequence >

</xs:complexType >
</xs:element >

</xs:schema >

And this is an example XML document conforming to the previous schema:

<?xml version="1.0" encoding="utf -8"?>
<Address xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

↪→ xsi:noNamespaceSchemaLocation="SimpleAddress.xsd">
<Recipient >Mr. Walter C. Brown </Recipient >
<House >49</House>
<Street >Featherstone Street </Street > <!-- This is a valid address -->
<Town>LONDON </Town>
<PostCode >EC1Y 8SY</PostCode >
<Country >UK</Country >

</Address >

1.4.4 RDF

Can XML be used to define ontologies? XML does not associate a shared semantics to the tags.
Suppose that another document uses a similar schema, but maybe with some missing tags, or tags that
are in a different languages, or simply synonyms, or are mere sequences of symbols with no evident
meaning:

<?xml version="1.0" encoding="
↪→ ISO -8859 -1"?>

<note>
<to>Tove</to>
<from>Jani</from>
<heading >Reminder </heading >
<body>"Don ’t␣forget␣me␣this␣

↪→ weekend!"</body>
</note>

<?xml version="1.0" encoding="
↪→ ISO -8859 -1"?>

<message >
<subject1 >Tove</subject1 >
<subject2 >Jani</subject2 >
<text>"Don ’t␣forget␣me␣this␣

↪→ weekend!"</text>
</message >

How can an autonomous agent use the available knowledge, i.e., for taking decisions and act? Notice
that tags on the right are not a mere translation of tags on the left: how can we know that subject1 is
the sender and subject2 is the receiver (if they are...)? How can we know that a message and a note
refer to the same concept?

• For example, in the left case, the XML Schema schema can say that

<note> must end with </note>, and must have four children
<to> must end with </to>
<from> must end with </from>
<heading> must end with </heading>
<body> must end with </body>

• In the right case, the XML Schema schema can say that

<message> must end with </message>, and must have four children
<subject1> must end with </subject1>
<subject2> must end with </subject2>
<text> must end with </text>

17

1.4 Semantic Web Technologies 1.4.4 RDF

There is no information to say that the two documents refer to a similar concept! −→ The Resource
Description Framework (RDF) is a first step towards building ontologies, i.e., associating a
semantics to documents.

What is RDF? RDF is a framework for describing resources on the web, designed to be read and under-
stood by computers but not designed for being displayed to people.

RDF is (usually) written in XML and it’s a part of the W3C’s Semantic Web Activity and is a W3C
Recommendation (see also: http://www.w3schools.com/rdf/)

RDF – examples of use:

– Describing properties for shopping items, such as price and availability
– Describing time schedules for web events
– Describing information about web pages (content, author, created and modified date)
– Describing content and rating for web pictures
– Describing content for search engines
– Describing electronic libraries

As we said, RDF documents are often written in XML. The XML language used by RDF is called RD-
F/XML. By using XML, RDF information can easily be exchanged between different types of computers
using different types of operating systems and application languages.

RDF identifies things using Web identifiers (Uniform Resource Identifiers - URIs), and describes
resources with properties and property values:

• A Resource is anything that can have a URI, such as http://www.w3schools.com/rdf
• A Property is a Resource that has a name, such as author or homepage
• AProperty Value is the value of a Property, such as Jan Egil Refsnes or http://www.w3schools.com

(note that a Property Value can be another resource)

Example The following RDF document could describe the resource http://www.w3schools.com/rdf.
This example comprises two triplets (Resource, Property, Property values) but it is simplified, since it
does not contain namespaces (see later):

<?xml version="1.0"?>

<rdf:RDF >
<Description about="http: //www.w3schools.com/rdf">

<author >Jan Egil Refsnes </author >
<homepage >http://www.w3schools.com</homepage >

</Description >
</rdf:RDF >

• The first one says that http://www.w3schools.com/rdf has the author that is Jan Egil -
Refsnes

• The second one says that http://www.w3schools.com/rdf has the homepage that is http://-
www.w3schools.com

Do not confuse RDF (which is conceptually a set of triplets) with its XML implementation!

The combination of a Resource, a Property, and a Property value forms a Statement (known as the
subject, predicate and object of a Statement). In the previous example:

• the Statement http://www.w3schools.com/rdf has the author that is Jan Egil Refsnes

(the subject of the statement above is http://www.w3schools.com/rdf, the predicate is author
and the object is Jan Egil Refsnes)

• the Statement http://www.w3schools.com/rdf has the homepage that is http://www.w3schools-
.com

(the subject of the statement above is http://www.w3schools.com/rdf, the predicate is homepage
and object is http://www.w3schools.com)

18

http://www.w3schools.com/rdf/

1.4 Semantic Web Technologies 1.4.5 RDFS

The RDF data model is similar to classic conceptual modeling approaches such as ER relationship
or class diagrams. RDF it is based upon the idea of making statements about resources (in particular
web resources) in the form of subject-predicate-object expressions.

These expressions are known as triples in RDF terminology:

• For example, one way to represent the notion “The sky has the color blue” in RDF is using the
triple composed of:

a subject denoting “the sky”
a predicate denoting “has the color”
and an object denoting “blue”

• A collection of RDF statements intrinsically represents a labeled, directed multi-graph, where

the subject is the predecessor node
the object is the successor node
the predicate is the arc.

Two common serialization formats of the RDF graph are in use:

1. The first is an XML format. This format is often called simply RDF because it was introduced
among the other W3C specifications defining RDF. However, it is important to distinguish the
XML format from the abstract RDF model itself.

2. In addition to serializing RDF as XML, the W3C introduced Notation 3 (or N3) as a non-XML
serialization of RDF models designed to be easier to write by hand, and in some cases easier to
follow.

Skipped slides "Description Logics" from 66 to 73

1.4.5 RDFS

RDF Schema (RDFS) is an extension to RDF. If RDF describes resources with classes, properties, and
values (to triplets which define a graph that is similar to Richard H. Richens semantic networks of 1956),
it still lacks of expressivity, missing a way to define application-specific classes and properties,
as well as taxonomies.

RDF Schema is an extension of RDF, and it provides the framework to describe application-specific
classes and properties. Classes in RDF Schema are much like classes in object oriented programming
languages, and this allows resources to be defined as instances of classes, and subclasses of classes.

In the following example the resource “horse” is a subclass of the class “animal”:

<?xml version="1.0"?>

<!-- This resource (the name can be used by other RDF file to refer to the
↪→ definition introduced here)-->

<rdf:RDF
xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#"
xml:base="http://www.animals.fake/animals#">

<rdf:Description rdf:ID="animal">
<rdf:type rdf:resource="http://www.w3.org /2000/01/rdf -schema#Class"/>

</rdf:Description >

<rdf:Description rdf:ID="horse">
<rdf:type rdf:resource="http://www.w3.org /2000/01/rdf -schema#Class"/>
<!-- Horse is defined as a subclass of animal -->
<rdfs:subClassOf rdf:resource="#animal"/>
</rdf:Description >

</rdf:RDF >

RDF is metadata (data about data), used to describe information resources. The Dublin Core
Metadata Initiative (DCMI) has created some predefined properties for describing documents. The
Dublin Core is a set of predefined properties for describing documents. The first Dublin Core properties
were defined at the Metadata Workshop in Dublin, Ohio in 1995 and is currently maintained by the

19

1.5 OWL 1.5.1

Dublin Core Metadata Initiative. This and other initiatives allow for a common vocabulary shared
among different agents operating in the network!

1.5 OWL

The Web Ontology Language (OWL)5 is built on top of RDF. It was designed for processing infor-
mation on the web and to be interpreted by computers (not for being read by people). It is written in
XML and has three sublanguages: OWL lite, OWL DL and OWL full.

For the web, ontology is about the exact description of web information and relationships between web
information. OWL is a part of the “Semantic Web Vision” - a future where:
– Web information has exact meaning
– Web information can be processed by computers
– Computers can integrate information from the web

OWL was designed for Processing Information, in order to provide a common way to process the
content of web information (instead of displaying it).

OWL is different from RDF. Even though they are much of the same thing, OWL is a stronger
language with greater machine interpretability than RDF, and it comes with a larger vocabulary and
stronger syntax than RDF.

OWL is written in XML, and by using XML, OWL information can easily be exchanged between
different types of computers using different types of operating system and application languages.

OWL is a Web Standard and became a W3C (World Wide Web Consortium) recommendation in
February 2004. A W3C Recommendation is understood by the industry and the web community as a
web standard, and it is a stable specification developed by a W3C Working Group and reviewed by the
W3C Membership.

1.5.1 OWL versions

There are three kind of OWL languages, with different expressiveness:

• OWL Lite supports those users primarily needing a classification hierarchy and simple constraints.
Since expressivity is low, OWL Lite also has a lower formal complexity than OWL DL;

• OWL DL (good compromise between complexity and expressiveness) supports those users who
want the maximum expressiveness while retaining computational completeness (all conclusions are
guaranteed to be computable) and decidability (all computations will finish in finite time).

OWL DL is so named due to its correspondence with description logics, a field of research that has
studied the logics that form the formal foundation of OWL.

• OWL Full is meant for users who want maximum expressiveness and the syntactic freedom of
RDF with no computational guarantees.

Every legal OWL Lite ontology is a legal OWL DL ontology
Every legal OWL DL ontology is a legal OWL Full ontology
Every valid OWL Lite conclusion is a valid OWL DL conclusion
Every valid OWL DL conclusion is a valid OWL Full conclusion.

There exist many interpreter, translators and reasoner available. The more recent OWL 2 proposes
three different profiles, with increasing expressivity (and hence increasing computational complexity in
reasoning): OWL2 EL, OWL2 QL and OWL2 RL.

5OWL is a W3C standard.

20

1.5 OWL 1.5.1 OWL versions

The OWL Web Ontology Language is intended to provide a language that can be used to describe the
classes and relations between them that are inherent in Web documents and applications.

We demonstrate the use of the OWL language to:

• formalize a domain by defining classes and properties of those classes

• define individuals and assert properties about them.

This constitute the basis to reason about these classes and individuals to the degree permitted by the
formal semantics of the OWL language (see also: http://www.w3schools.com/rdf/rdf_owl.asp)

For a tutorial on how to design an ontology using the Protégẃ ontology editor check the webpage
http://protege.stanford.edu/doc/owl/getting-started.html

Before we can use a set of terms, we need a precise indication of what specific vocabularies are being used.
A standard initial component of an ontology includes a set of XML namespace declarations enclosed in
an opening rdf:RDF tag. These provide a means to unambiguously interpret identifiers and make the
rest of the ontology presentation much more readable. A typical OWL ontology begins with a namespace
declarations similar to the following (of course, the URIs of the defined ontologies will not usually be
w3.org references)

Once namespaces are established we normally include a collection of assertions about the ontology grouped
under an owl:Ontology tag.

21

http://www.w3schools.com/rdf/rdf_owl.asp
http://protege.stanford.edu/doc/owl/getting-started.html

1.5 OWL 1.5.3 Classes and Individuals

Importing another ontology brings the entire set of assertions provided by that ontology into the current
ontology. In order to make best use of this imported ontology it would normally be coordinated with a
namespace declaration. Notice the distinction between these two mechanisms:

• The namespace declarations provide a convenient means to reference names defined in other OWL
ontologies;

• The actual instruction owl:imports is provided to indicate your intention to include the assertions
of the target ontology.

Importing another ontology,O2, will also import all of the ontologies thatO2imports.

Note that owl:imports may not always succeed. As you would expect when dealing with the Semantic
Web, access to resources distributed across the Web may not always be possible. Tools will respond to
this situation in an implementation defined manner.

1.5.2 Classes and Individuals

Many uses of an ontology will depend on the ability to reason about individuals. In order to do this
in a useful fashion we need to have a mechanism to describe the classes that individuals belong to and
the properties that they inherit by virtue of class membership. We can always assert specific properties
about individuals, but much of the power of ontologies comes from class-based reasoning. Sometimes we
want to emphasize the distinction between a class as an object and a class as a set containing elements.
We call the set of individuals that are members of a class the extension of the class.

The most basic concepts in a domain should correspond to classes that are the roots of various taxonomic
trees. OWL also defines the empty class, owl:Nothing.

Formally, we know almost nothing about these classes other than their existence, despite the use of
familiar English terms as labels. For all we know at the moment, these classes might as well have been
called Thing1, Thing2, and Thing3.

In the Description Logics terminology we refer to classes as to "concepts".

1.5.3 Class constructor

The fundamental taxonomic constructor for classes is rdfs:subClassOf. It relates a more specific class
to a more general class: if X is a subclass of Y , then every instance of X is also an instance of Y .

The rdfs:subClassOfrelation is transitive. If X is a subclass of Y and Y a subclass of Z then X is a
subclass of Z.

We define PotableLiquid (liquids suitable for drinking) to be a subclass of ConsumableThing.

22

1.5 OWL 1.5.3 Class constructor

A class definition has two parts:

• A name introduction or reference.

• A list of restrictions.

Each of the immediate contained expressions in the class definition further restricts the instances of the
defined class. Instances of the class belong to the intersection of the restrictions. So far we have only seen
examples that include a single restriction, forcing the new class to be a subclass of some other named
class.

In addition to classes, we want to be able to describe their members. We normally think of these as
individuals in our universe of things.

An individual can be introduced in two ways:

In the Description Logics we use the same terminology used in OWL to refer to individuals.

We add a few more classes to be used in the following examples.

23

1.5 OWL 1.5.5 Classes and individual

1.5.4 Classes and individual

There are important issues regarding the distinction between a class and an individual in OWL. A class
is simply a name and collection of properties that describe a set of individuals. Individuals are the
members of those sets. Thus classes should correspond to naturally occurring sets of things in a domain
of discourse, and individuals should correspond to actual entities that can be grouped into these classes.

It is very easy to confuse the instance-of relationship with the subclass relationship. For example, it may
seem arbitrary to choose to make CabernetSauvignonGrape an individual that is an instance of Grape,as
opposed to a subclass of Grape. This is not an arbitrary decision. The Grape class denotes the set of
all grape varietals, and therefore any subclass of Grape should denote a subset of these varietals. Thus,
CabernetSauvignonGrape should be considered an instance of "Grape", and not a subclass. It does not
describe a subset of Grape varietals, it is a grape varietal.

In different contexts, it could be different: if Grape represents the class of all bunches of grapes I have on
my table, CabernetSauvignonGrape could represent the subclass of all bunches of grapes of that specific
varietal.

1.5.5 Properties

A property is a binary relation that lets us assert general facts about the members of classes and
specific facts about individuals.

Two types of properties are distinguished:

• Datatype properties: relations between instances of classes and RDF literals and XML Schema
datatypes.

• Object properties: relations between instances of two classes.

When we define a property there are a number of ways to restrict the relation, the domain and range can
be specified or the property can be defined to be a specialization (subproperty) of an existing property.
More elaborate restrictions are possible.

Remember that in OWL, a sequence of elements without an explicit operator represents an implicit
conjunction / intersection. The property madeFromGrape has

• A domain ofWine

• A range ofWineGrape

That is, it relates instances of the class Wine to instances of the class WineGrape. Multiple domains mean
that the domain of the property is the intersection of the identified classes (and similarly for range).

24

1.5 OWL 1.5.6 Hierarchy

Note that the use of range and domain information in OWL is different from type information in a
programming language. Among other things, types are used to check consistency in a programming
language. In OWL, a range may be used to infer a type. For example, given:

we can infer that LindemansBin65Chardonnay is a wine because the domain of madeFromGrape is Wine.

This reasoning procedure is also referred to as instance checking, i.e., checking the class an individual
belongs to.

1.5.6 Hierarchy

Properties, like classes, can be arranged in a hierarchy:

25

1.5 OWL 1.5.7 Hierarchy

The rdfs:subPropertyOf relation in this case means that anything with a hasColor property with value
X also has a hasWineDescriptor property with value X.

It is now possible to expand the definition ofWine to include the notion that a wine is made from at least
one WineGrape. As with property definitions, class definitions have multiple subparts that are implicitly
conjoined.

We distinguish properties according to whether they relate

• Individuals to individuals (object properties)

• Individuals to datatypes (datatype properties)

Datatype properties may range over RDF literals or simple types defined in accordance with XML Schema
datatypes. An example list of dataset is the following:

First we describe Region and Winery individuals, and then we define a Cabernet Sauvignon.

26

1.5 OWL 1.5.7 List of properties

1.5.7 List of properties

Transitive property: if a property, P , is specified as transitive then for any x, y, and z:

P(x,y) and P(y,z) implies P(x,z)

The property locatedIn is transitive.

Symmetric property: if a property, P, is tagged as symmetric then for any x and y:

P(x,y) iff P(y,x)

The property adjacentRegion is symmetric, while locatedInis not.

Functional property If a property, P, is tagged as functional then for all x, y, and z:

P(x,y) and P(x,z) implies y = z

27

1.5 OWL 1.5.8 Property Restrictions

Inverse property if a property, P1, is tagged as the owl:inverseOf P2, then for all x and y:

P1(x,y) iff P2(y,x)

1.5.8 Property Restrictions

In addition to designating property characteristics, it is possible to further constrain the range of a
property in specific contexts in a variety of ways. We do this with property restrictions. The various
forms described below can only be used within the context of an owl:Restriction. The owl:onProperty
element indicates the restricted property.

The property restriction owl:someValuesFrom is similar. The difference between the two formulations is
the difference between a universal and existential quantification.

allValuesFrom: For all wines, if they have makers, all the makers are wineries. This does not require a
wine to have a maker. If it does have one or more, they must all be wineries.

someValuesFrom: For all wines, they have at least one maker that is a winery. This requires that there
be at least one maker that is a winery, but there may be makers that are not wineries.

28

1.6 SWRL 1.6.0

Cardinality We have already seen examples of cardinality constraints. To date, they have been asser-
tions about minimum cardinality. Even more straight-forward is owl:cardinality, which permits the
specification of exactly the number of elements in a relation. For example, we specify Vintage to be a
class with exactly one VintageYear.

Once the ontology has been built, it is possible to reason upon it.

Some example are

• Determine whether or not the ontology is consistent

• Identify subsumption relationships between classes

• Checking if an individual is an instance of a class or not

Some popular reasoners are:

• Hermit

• RACER

• FaCT

• FaCT++

• Pellet

1.6 SWRL

More advanced reasoning can be made using SWRL rules. SWRL extends the set of OWL axioms to
include Horn-like rules. It thus enables Horn-like rules to be combined with an OWL knowledge base.
The proposed rules are of the form of an implication between an antecedent (body) and consequent
(head).

The intended meaning can be read as: whenever the conditions specified in the antecedent hold, then the
conditions specified in the consequent must also hold.

Both the antecedent (body) and consequent (head) consist of zero or more atoms.

• An empty antecedent is treated as trivially true (i.e. satisfied by every interpretation), so the
consequent must also be satisfied by every interpretation;

29

1.6 SWRL 1.6.1 Rules and axioms

• An empty consequent is treated as trivially false (i.e., not satisfied by any interpretation), so
the antecedent must also not be satisfied by any interpretation. Multiple atoms are treated as a
conjunction. Note that rules with conjunctive consequents could easily be transformed into multiple
rules each with an atomic consequent.

Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where

• C is an OWL description

• P is an OWL property

• x,y are either variables, OWL individuals or OWL data values.

It is easy to see that OWL DL becomes undecidable when extended in this way.

We will give an XML syntax for these rules based on RuleML and the OWL XML presentation syntax.

We start with an abstract syntax, which does not correspond to any implementation language. The
abstract syntax is specified here by means of a version of Extended BNF.

• Terminals are quoted

• Non-terminals are bold and not quoted

• Alternatives are either separated by vertical bars (|) or are given in different productions.

• Components that can occur at most once are enclosed in square brackets ([...])

• Components that can occur any number of times (including zero) are enclosed in braces (...).

• Whitespace is ignored in the productions here.

1.6.1 Rules and axioms

An OWL ontology in the abstract syntax contains a sequence of axioms and facts.

Axioms may be of various kinds, e.g., subClass axioms and equivalentClass axioms. It is proposed to
extend this with rule axioms.

axiom ::= rule

A rule axiom consists of an antecedent (body) and a consequent (head), each of which consists of a
(possibly empty) set of atoms. A rule axiom can also be assigned a URI reference, which could serve to
identify the rule.

rule ::=′ Implies(′[URIreference]annotationantecedentconsequent′)′

antecedent ::=′ Antecedent(′atom′)′

consequent ::=′ Consequent(′atom′)′

Informally, a rule may be read as meaning that if the antecedent holds (is "true"), then the consequent
must also hold.

• An empty antecedent is treated as trivially holding (true). Rules with an empty antecedent can
thus be used to provide unconditional facts; however such unconditional facts are better stated in
OWL itself, i.e., without the use of the rule construct.

• An empty consequent is treated as trivially not holding (false).

Non-empty antecedents and consequents hold iff all of their constituent atoms hold, i.e., they are treated
as conjunctions of their atoms.

30

1.6 SWRL 1.6.2 Human Readable Syntax

Atoms can be of the form C(x), P(x,y), sameAs(x,y) differentFrom(x,y), or builtIn(r,x,...) where:

• C is an OWL description or data range

• P is an OWL property

• r is a built-in relation

• x and y are either variables, OWL individuals or OWL data values, as appropriate.

Informally

• An atom C(x) holds if x is an instance of the class description or data range C

• An atom P(x,y) holds if x is related to y by property P

• An atom sameAs(x,y) holds if x is interpreted as the same object as y

• An atom differentFrom(x,y) holds if x and y are interpreted as different objects.

• And builtIn(r,x,...) holds if the built-in relation r holds on the interpretations of the arguments.

Note that the "sameAs" and "differentFrom" two forms can be seen as "syntactic sugar": they are
convenient, but do not increase the expressive power of the language (i.e., such (in)equalities can already
be expressed using the combined power of OWL and rules without explicit (in)equality atoms).

Atoms may refer to individuals, data literals, individual variables or data variables. Variables are treated
as universally quantified, with their scope limited to a given rule.

As usual, only variables that occur in the antecedent of a rule may occur in the consequent (a condition
usually referred to as "safety").

1.6.2 Human Readable Syntax

While the abstract EBNF syntax is consistent with the OWL specification, and is useful for defining
XML and RDF serialisations, it is rather verbose and not particularly easy to read.

In the following we will, therefore, often use a relatively informal "human readable" form:

antecedent ⇒ consequent

where both antecedent and consequent are conjunctions of atoms written a1 ∧ ... ∧ an.
Variables are indicated using the standard convention of prefixing them with a question mark (e.g., ?x).

31

1.6 SWRL 1.6.3 The XML Concrete Syntax

Using this syntax, a rule asserting that the composition of parent and brother properties implies the
uncle property would be written:

parent(?x, ?y) ∧ brother(?y, ?z) ⇒ uncle(?x, ?z)

In this syntax, built-in relations that are functional can be written in functional notation, i.e., "op:numeric-
add(?x,3,?z)" can be written instead as

?x = op : numeric− add(3, ?z)

A simple use of these rules would be to assert that the combination of the hasParent and hasBrother
properties implies the "hasUncleproperty".

Informally, this rule could be written as:

hasParent(?x1, ?x2) ∧ hasBrother(?x2, ?x3) ⇒ hasUncle(?x1, ?x3)

In the abstract syntax the rule would be written like:

Implies(Antecedent(hasParent(I − variable(x1)I − variable(x2))

hasBrother(I − variable(x2)I − variable(x3)))

Consequent(hasUncle(I − variable(x1)I − variable(x3))))

From this rule, if John has Mary as a parent and Mary has Bill as a brother then John has Bill as an
uncle.

An even simpler rule would be to assert that "Students" are "Persons", as in

Student(?x1) ⇒ Person(?x1)

Or, in the abstract syntax:

Implies(Antecedent(Student(I − variable(x1))) Consequent(Person(I − variable(x1))))

However, this kind of use for rules in OWL just duplicates the OWL subclass facility. It is logically
equivalent to write instead that the class "Student" is a subclass of "Person", which would make the
information directly available to an OWL reasoner.

A very common use for rules is to move property values from one individual to a related individual, as
in the following example that expresses the fact that the style of an art object is the same as the style of
the creator.

Artist(?x) & artistStyle(?x, ?y) & Style(?y) & creator(?z, ?x) ⇒ style/period(?z, ?y)

Or, in the abstract syntax

Implies(Antecedent(Artist(I − variable(x))artistStyle(I − variable(x)

I − variable(y))Style(I − variable(y))creator(I − variable(z)I − variable(x)))

Consequent(style/period(I − variable(z)I − variable(y))))

1.6.3 The XML Concrete Syntax

The XML Concrete Syntax is a combination of the OWL Web Ontology Language XML Presentation
Syntax with the RuleML XML syntax.

The Ontology root element of the OWL XML Presentation Syntax is extended to include "imp"
(implication rule) and "var" (variable declaration) axioms as found under the rulebase root of RuleML.

Element Ontology

32

1.6 SWRL 1.6.3 The XML Concrete Syntax

Let us consider the "elementruleml:var" axiom. Variable (var) axioms are statements about variables,
indicating that the given string is to be used as a variable.

< ruleml : var > xsd : string < /ruleml : var >

A var axiom simply defines the existence of a variable. This is taken from the RuleML namespace. For
example:

Parents : swrlx : Ontology

Let us consider the "elementruleml:imp" axiom. Rule axioms (imp elements) are taken from the RuleML
namespace. A rule axiom can be read as a logical implication between the antecedent (_body) and
consequent (_head).

< ruleml : imp > Content : (_rlab?, owlx : Annotation∗,_body,h ead) < /ruleml : imp >

Note:This element allows one to say that every binding that satisfies the _body of the rule must also
satisfy the _head of the rule. All the child elements will now be described in details.

A rule axiom may optionally be named using a URI. elemen truleml:_rlab

< ruleml : _rlabruleml : href = xsd : anyURI(required) > Content : () < /ruleml : _rlab >

Both _body and _head are lists of atoms and are read as the conjunction of the component atoms.
elementruleml:_body

< ruleml : _body > Content : (swrlx : atom∗) < /ruleml : _body >

Parents:ruleml:imp elementruleml:_head

< ruleml : _head > Content : (swrlx : atom∗) < /ruleml : _head >

Atoms can be formed from unary predicates (classes), binary predicates (properties), equalities or
inequalities.

• Model group "swrlx:atom"

Content :(swrlx:classAtom | swrlx:datarangeAtom | swrlx:
↪→ individualPropertyAtom

| swrlx:datavaluedPropertyAtom | swrlx:sameIndividualAtom | swrlx:
↪→ differentIndividualsAtom | swrlx:builtinAtom)

Class atoms consist of a description and either an individual name or a variable name.

– Element swrlx:classAtom

<swrlx:classAtom > Content :(owlx:description , swrlx:iObject) </
↪→ swrlx:classAtom >

33

1.6 SWRL 1.6.3 The XML Concrete Syntax

Parents:swrlx:atom
For example

<swrlx:classAtom >
<owlx:Class owlx:name="Person" />
<ruleml:var >x1 </ ruleml:var >

</swrlx:classAtom >

Datarange atoms consist of a data range and either a literal or a variable name.
– Element swrlx:datarangeAtom

<swrlx:datarangeAtom > Content :(owlx:datarange , swrlx:dObject)
↪→ </swrlx:datarangeAtom >

Parents: swrlx:atom
The description in a datarange atom may be a datatype ID, or may be a set of literals. For
example:

<swrlx:datarangeAtom >
<owlx:Datatype owlx:name="\&xsd;int" />
<ruleml:var >x1 </ ruleml:var >
</swrlx:datarangeAtom >

– Element swrlx:individualPropertyAtom

<swrlx:individualPropertyAtom swrlx:property = xsd:anyURI {
↪→ required} >

Content :(swrlx:iObject , swrlx:iObject)
</swrlx:individualPropertyAtom >

Attribute: swrlx:property -a reference to an individual property nameParents:swrlx:atom
For example

<swrlx:individualPropertyAtom swrlx:property="hasParent">
<ruleml:var >x1 </ ruleml:var >
<owlx:Individual owlx:name="John" />
</swrlx:individualPropertyAtom >

– Element swrlx:datavaluedPropertyAtom

<swrlx:datavaluedPropertyAtom swrlx:property = xsd:anyURI {
↪→ required} >

Content :(swrlx:iObject , swrlx:dObject)
</swrlx:datavaluedPropertyAtom >

Attribute: swrlx:property -a reference to an datavalued property nameParents:swrlx:atom
For example

<swrlx:datavaluedPropertyAtom swrlx:property="grade">
<ruleml:var >x1 </ ruleml:var >
<owlx:DataValue owlx:datatype="&xsd;int" >4</owlx:DataValue >
</swrlx:datavaluedPropertyAtom >

• Model group swrlx:iObject

Content :(owlx:Individual[ID] | ruleml:var[ID])

Parents: swrlx:classAtom, swrlx:individualPropertyAtom, swrlx:sameIndividualAtom, swrlx:differentIndividualsAtom

• Model group swrlx:dObject

Content :(owlx:DataValue | ruleml:var[ID])

Parents: swrlx:datavaluedPropertyAtom

34

1.6 SWRL 1.6.5 Rule assertion

– Element ruleml:var ID

<ruleml:var >xsd:string </ ruleml:var >

Parents: swrlx:iObject, swrlx:dObject

Note: this element is used for solely referring to a variable ID, and does not actually define
any variable, unlike avar axiom.

1.6.4 Rule assertion

We can use SWRL to assert that the combination of the "hasParent" and "hasBrother" properties implies
the "hasUncle" property:

<ruleml:imp >
<ruleml:_rlab ruleml:href="#example1"/>
<ruleml:_body >
<swrlx:individualPropertyAtom swrlx:property="hasParent">
<ruleml:var >x1 </ ruleml:var >
<ruleml:var >x2 </ ruleml:var >
</swrlx:individualPropertyAtom >
<swrlx:individualPropertyAtom swrlx:property="hasBrother">
<ruleml:var >x2 </ ruleml:var >
<ruleml:var >x3 </ ruleml:var >
</swrlx:individualPropertyAtom >
</ruleml:_body >
<ruleml:_head >
<swrlx:individualPropertyAtom swrlx:property="hasUncle">
<ruleml:var >x1 </ ruleml:var >
<ruleml:var >x3 </ ruleml:var >
</swrlx:individualPropertyAtom >
</ruleml:_head >
</ruleml:imp >

This rule asserts that if "x1" "hasParent x2", "x2" "hasSibling x3", and "x3" "hasSex male", then "x1"
"hasUncle x3"

<ruleml:imp >
<ruleml:_rlab ruleml:href="#example2"/>
<ruleml:_body >
<swrlx:individualPropertyAtom swrlx:property="hasParent">
<ruleml:var >x1 </ ruleml:var >
<ruleml:var >x2 </ ruleml:var >
</swrlx:individualPropertyAtom >
<swrlx:individualPropertyAtom swrlx:property="hasSibling">
<ruleml:var >x2 </ ruleml:var >
<ruleml:var >x3 </ ruleml:var >
</swrlx:individualPropertyAtom >
<swrlx:individualPropertyAtom swrlx:property="hasSex">
<ruleml:var >x3 </ ruleml:var >
<owlx:Individual owlx:name="#male" />
</swrlx:individualPropertyAtom >
</ruleml:_body >
<ruleml:_head >
<swrlx:individualPropertyAtom swrlx:property="hasUncle">
<ruleml:var >x1 </ ruleml:var >
<ruleml:var >x3 </ ruleml:var >
</swrlx:individualPropertyAtom >
</ruleml:_head >
</ruleml:imp >

35

1.6 SWRL 1.6.5 Ontology

1.6.5 Ontology

The top layers of the Semantic Web stack contain technologies that are not yet standardized and are
required to realize the Semantic Web.

OWL plus SWRL rules plus SPARQL query language are integrated together in a common Unifying
Logics framework.

Cryptographyis required to verify that information is coming from a trusted source.

Trust to derived statements will be supported by (a) verifying that the premises come from trusted source
and by (b) relying on formal logic during deriving new information.

User interface is the final layer enabling users to interact with semantic web applications.

What can be used ontologies in AmI for? As usual, to represent, exchange, reason upon knowledge.

For example, agents can exchange information with other agents, or collect information on the internet.
In addition, they can be used to perform "context assessment" and "situation assessment"

• Context assessment means understanding the status of "things" that are related to a given entity
(where am I located? Is the oven on or off)

• Situation assessment means how the context evolves in time.

The epistemic problem: how is it possible to acquire new knowledge and store it in the Knowledge
base?

36

Chapter 2

Sensors

2.1 Introduction

Sensing devices provide the first step towards context awareness. The W5+ questions:

• Who: Tracking and identifying persons and pets, i.e. the actors of the Ambient Intelligence (AmI)
environment;

• Where and When: Providing a time frame for location and object associations to determine
context;

• What: Recognizing activities, interactions, spatio temporal relations, but also linguistic and non
linguistic messages, signals, and signs;

• Why: Association of actions with action semantics, scripts and plans, identification of tasks and
behaviour patterns;

• How: Tracing the information flow through multiple modalities, recognizing expressions, move-
ments, gestures.

2.2 Cameras

Traditionally, research has focused mainly on audio visual observations as these modalities provide almost
all signals that humans make use of in interpersonal communication. The visual domain represents all
the following categories:

• Face detection and identification.

• Person and object tracking;

• Facial expression recognition;

• Body posture recognition;

• Attention direction sensing;

• Hand tracking and hand gesture recognition;

• More recently, object and place recognition.

2.2.1 Face detection / Facial expression recognition

• What happens when the face is seen under a different perspective?

• What about occlusion and changing lighting conditions?

37

2.3 RGB-D Cameras 2.3.0 Person and object tracking / Body posture recognition

2.2.2 Person and object tracking / Body posture recognition

• What about occlusions? Current research focuses on people tracking in the crowd!

Cameras can be used for objects and places recognition, for recognizing emotions and so on. All these
computation can be performed with the help of some kind of cloud computing platform such as clarifai,
Microsoft Azure, Google Coolab and so on.

2.3 RGB-D Cameras

An RGB-D camera is a time of flight camera (TOF camera) which is able to create distance data with help
of the time of flight (TOF) principle. The principle is similar to that of laser scanners with the advantage
that whole scene is captured at the same time. Infrared light from the camera’s internal lighting source
is reflected by objects in the scene and travels back to the camera, where its precise time of arrival is
measured independently by each of tens of thousands of sensor pixels. Resolution is low (about 320x240
pixel in 2011) and it requires an illumination unit, i.e., it is not a passive sensor.

The output data of and RGB-D camera can look as follows:

38

2.7 Event Cameras 2.7.0 Microsoft Kinect

2.3.1 Microsoft Kinect

An example of RGB-D camera available in the market is the Microsoft Kinect, a device that features
an RGB camera, depth sensor and multi array microphone. The depth sensor consists of an infrared
laser projector combined with a monochrome CMOS sensor, which captures video data in 3D under any
ambient light conditions. The Kinect sensor has a ranging limit of 0.7 6 m (2.3 20 ft) and has an angular
field of view of 57 degrees horizontally and 43 degrees vertically. At the minimum distance resolution is
1.3 mm (0.051 in) per pixel.

In the kinect, the depth map is constructed by analyzing a speckle pattern of infrared laser light. It used
the structured light general principle: it projects a known pattern onto the scene and infer depth from
the deformation of that pattern.

2.4 Stereo Cameras

Stereo cameras provide the same information about the three dimensional structure of the environment

2.5 Microphones

The auditory domain is primarily about speech recognition, which is the process of detecting speech and
identify and localize speakers determining properties of the source, e.g. detecting head orientation of
speaking persons in the room (relies on microphone arrays). Recently more attention has been paid to
general auditory signal analysis in order to identify broader classes of sounds (ShotSpotter system)

2.6 Event Cameras

In event cameras, only local pixel level changes are transmitted at the time they occur. The result is
a stream of events at microsecond time resolution, equivalent to conventional vision sensors running at
thousands of frames per second but with far less data. Power, data storage and computational require-
ments are also drastically reduced, and sensor dynamic range is increased by orders of magnitude due to
local processing.

39

2.9 RFID Antennas 2.9.0

2.7 Presence sensors

Passive infrared sensors (PIR sensor) register the infrared emissions from objects (notably humans, an-
imals and vehicles). They provide complementary features for motion and object classification. With a
network of PIR devices deployed in the AmI environment, it becomes possible to detect fire and smoke,
but also to learn movement patterns of the inhabitants.

PIR sensors measure infrared (IR) light radiating from objects in its field of view. They are often used
in the construction of PIR based motion detectors. Apparent motion is detected when an infrared source
with one temperature, such as a human, passes in front of an infrared source with another temperature,
such as a wall. The term passive means that the PIR device does not emit an infrared beam but merely
passively accepts incoming infrared radiation. The window may have multiple Fresnel lenses moulded
into it, i.e., a lens with large aperture and short focal length without the mass and volume of material
that would be required by a lens of conventional design.

2.8 RFID Antennas

Radio frequency identification (RFID) technology is making inroads in the AmI setting as it allows both
sensing of object proximity and identification. Passive RFID tags are small, flexible and do not require
endogenous power to operate. They can therefore be placed on every day objects. Strategically positioned
RFID antennas will be able to identify the objects or persons that pass in their proximity. Research is
looking for smaller RFID, with a higher communication range and bandwidth.

Today, RFID tags are used for a lot of different applications:

• Identity recognition

• Transportation payments

• Product tracking

• Clothes

Collecting the data from different readers allows the system to infer activities of the main actors in an
AmI scenario, such as assuming that people wear a bracelet which registers the ID tags on all the objects
the user touches and to perform localization.

By sticking a large number of RFID tags on a variety of objects and appliances (e.g. kettle, coffee mugs,
etc.) in the household or office, it becomes possible to infer what activity a person is involved in (e.g.
making a cup of coffee). Tagging the users of an AmI system with RFID is also very useful for collecting
ground truth data for face, gesture, body posture and speech recognition applications, which usually
incorporate statistical models that require large amounts of data for robust operation.

40

2.10 3D laser scanner 2.10.0

2.9 Laser Scanner

Range sensing sensors are used in robotics for mapping and obstacle detection, as well as for localization.
In AmI, they can be used to implement light curtains, that are opto electronic devices used to safeguard
personnel in the vicinity of moving machinery with the potential to cause harm such as (but not limited
to) presses, winders and palletizers. They are also used in Museums, e.g., to preserve paintings from
vandalism.

How can they be used in Ambient Intelligence? Laser scanners return range measurements with a given
angular resolution (e.g., 0.5 degrees with a Field of view of 270 degree). Range measurement can be used
for:

• Build a 2D geometrical map of the environment, which describes the profile of walls, furniture,
people, etc. Perform Cartesian localization.

• Define safety regions in which nobody is allowed to enter.

The output of a laser scanning of an area will look as follows:

2.10 3D laser scanner

A 3D Laser scanner is ideally composed of a laser scanner and a Pan unit. The output of a 3D laser
scanning of an area will look as follows:

41

2.14 Artefacts 2.14.0

2.11 Accelerometers and gyroscopes

Inertial Measurement Units measure linear acceleration and orientation, they use a combination of ac-
celerometers and gyroscopes. They are typically used to manoeuvre aircraft, including UAVs, but also
mobile robots. They can be used to measure human motion and posture (gait, falls, etc.) and for games.

They can measure acceleration and orientation along 6 axes and they can be integrated to provide
Cartesian position.

2.12 GPS and environmental sensors

GPS sensors and environmental sensors for light, temperature, pressure or vibration are often already
equipped with wireless communication capabilities.

2.13 Switches

Switches are the most simple but most useful sensors for AmI.

They have a lot of very good properties:

• They are very unobtrusive

• They are very reliable

• They can be easily embedded in many objects that plays a fundamental role in human activity
(door and window handles, light switches, taps, ovens, fridges).

2.14 Artefacts

Sensing devices can be used to build artefact. Turning an object into an artefact is a process that aims
at enhancing its characteristics and properties and abilities so that the new affordances will emerge.

42

2.15 Sensing Devices Classification 2.15.0

Affordance is a term introduced by psychologist J. Gibson.

“"action possibilities" latent in the environment, objectively measurable and independent of
the individual’s ability to recognize them, but always in relation to the actor and therefore
dependent on their capabilities.”

For instance, a set of steps which rises four feet high does not afford the act of climbing if the actor is a
crawling infant. The term is used in the field of design and Human Computer Interaction.

In practical terms, building an artefact is about providing the object with the necessary hardware and
software modules, by embedding the hardware modules into the object and installing the software modules
that will determine its functionality,

Generally, this phase involves embedding into the artefact

• A power source

• An array of sensors and actuators

• A processor board

• A wireless module

• A fes buttons and a screen

Nevertheless, some of these modules may not appear in all artefacts. For example:

• Artefacts, especially mobile ones, may have batteries but large artefacts can be directly connected
to an electricity socket;

• The number of sensors may range from tens to none. An artefact may simply receive sensor data
from other artefacts;

• The processor board may be embedded in the artefact, but it may also be the case that the artefact
"rents" processing time and storage space at a nearby (using network, not physical terms) server;

• The wireless module is probably the most distinguishing module; nevertheless, an artefact may only
carry a passive tag, which, when tracked, triggers an action at another artefact. Also, it can be
connected to the network;

• Screens and buttons are generally avoided, especially in small size artefacts, as they occupy a lot
of space and consume a lot of power.

Most usually, the hardware modules will be embedded in the artefact and unique ID (could be a serial
number) will be assigned to it at the time of its manufacture.

Example: Smart Fridge

• It senses object inside (through RFID antenna)

• It detects the expiration date of food

• It warns the user if some food has expired or has finished

• If the user plans to prepare a recipe, it checks if all ingredients are available

• If some ingredients are not available, it orders them online

2.15 Sensing Devices Classification

We skip details about the sensor hardware, instead, we propose a classification of sensing devices which is
significant for AmI applications (we also speak about "sensing services"). In particular, sensing devices
are classified according different axes:

• The "dimensions" and the "domain" of data they return, i.e., boolean , scalar, named values, 1
dimensional vector, 2 dimensional vector, etc;

• How much "simple" they are;

• If they are localized/able to localize themselves and other objects.

43

2.15 Sensing Devices Classification 2.15.3 Dimensions and domain of data

We do not try to give a rigorous definition: instead, we refer to the intuitive meaning of the previous
notions.

2.15.1 Dimensions and domain of data

Cameras return 2D data. However, motion detection camera returns boolean data (i.e., TRUE or FALSE,
depending on the fact that there is something moving or not). One could object that, in the second case,
we are not considering raw data, but the information obtained by a motion detection algorithm.

What about a boolean camera which returns TRUE if and only if it recognizes me? What about an
"Antonio Detection Camera"? (or a "Daniel Dennet Detection Camera"?).

What should we consider as being part of the sensing device, the hardware? The firmware? Both of them
plus processing software?

The key point is that motion detection with a camera is reliable , (and in fact it is often implemented in
the firmware), i.e., it has a low error rate (<1%). The "AD Camera" is not reliable, it often fails when
in presence of occlusions, when perspective changes, etc

Definition 1 We call "sensing device" the hardware that come out of the box, including firmware, plus
additional software which process data by still providing results with a very low error rate

2.15.2 Dimensional space and data processing

The higher is the "dimension" of the data returned, the more complex is data processing.

Sensing devices can be ordered in increasing order with respect to both dimensional space and processing
requirements.

1. Single Boolean values: cameras for motion detection, Passive InfraRed Sensors, safety laser
scanners, switches.

2. Single Named values: RFID antenna and tags.
3. Single scalar value: temperature, pressure, light, humidity, microphones.
4. Ordered set of scalar values: GPS, inertial measurement units, laser scanner.
5. Grid of scalar values: B&W camera, 3D Laser scanner
6. Grid of vectors: RGB camera, 3D Stereo Camera, TOF camera.

2.15.3 A simple device

The definition of "simple" is even "fuzzier":

Definition 2 A sensing device is "simple" if it say something about entities and facts of the word at
the level of abstraction commonly used by humans to describe the world.

Examples

• A switch says that "somebody has turned the light on".
• A PIR sensor says that "somebody is present in the room".
• A camera for motion detection says the same thing (at a higher cost).

Both information can be easily expressed in natural language, and have an "intuitive" meaning.

A camera (not used for motion detection) returns a grid of pixel. The image need additional processing
to say something about entities and facts of the world which are "interesting" for humans.

Unfortunately, the information "somebody is here" returned by the motion detection camera is reliable,
object recognition is not. Therefore, according to Definition 1, a "camera that detects armchairs" does
not exist as a "reliable" sensing device.

The only sensing device that exists is the camera, which unfortunately is not simple sensor since it does
not provide information at a high level of abstraction.

44

2.15 Sensing Devices Classification 2.15.3 A simple device

An alternative definition could be the following:

Definition 2bis A sensing device is "simple" if it say something that can be "reliably" expressed in
symbolic form by using only first order predicates available in the "domain".

At time t the motion detection camera in the kitchen says:

∃x, moving(x, kitchen, t)

Similarly one could state that:

At time t the armchair detecting camera says

∃x, is_in (x, hallway, t) ∧ armchair(x)

But that information is not very reliable, this is the well known problem of symbol grounding.

If the perceptual anchoring of symbols is wrong, all subsequent inferences are wrong as well.

Ideally, one should compute the error probability in detecting objects and to propagate such probability
in all subsequent inferences.

However the standard video camera V1 says

pixel(V1, 1, 1, 203,t)
pixel(V1, 1, 2, 202,t)
...
pixel(V1, 640, 480, 157,t)

By assuming here that V1 has resolution 640x480 and returns images in gray tones:

• The second and third variables correspond to row and column.

• The fourth variable corresponds to the gray tone.

This appears a little strange but it still makes sense.

Does it mean that a standard video camera is a "simple" sensing device? It depends on the "domain"
considered.

Ontology is the philosophical study of the nature of being, existence or reality in general, as well as of the
basic categories of being and their relations. Ontology deals with questions concerning what entities exist
or can be said to exist, and how such entities can be grouped, related within a hierarchy, and subdivided
according to similarities and differences, as it can be seen from the following image:

The informatics meaning of ontology is more specific: here we mean "what exists" in the domain consid-
ered.

A simple ontology can reach very different domains:

45

2.15 Sensing Devices Classification 2.15.5 From simple to complex devices

If we are interested, for example, in perceiving objects, humans, as well as fact and relationships between
objects and humans, we can assume a "human environment ontology". It is unlikely that "pixel" will be
part of the "human environment ontology", as well as "electrons" are not part of the "System biology
ontology". "Electrons" are presumably described in the "Particle physics ontology".

The process of describing entities belonging to an ontology through its component entities belonging to
a lower level ontology is a type of "reductionism".

2.15.4 From simple to complex devices

We call a sensing device"simple" in a given domain if is able to say something reliable (i.e., with a low
error rate) about entities in the ontology which describe that domain (e.g., humans, objects, etc.).

We call a sensing device "complex" in a given domain if it is able to say something reliable only about
entities belonging to an ontology at a lower level of abstraction (e.g., pixels, range measurements), and it
requires further processing (which introduce errors) to describe higher level entities on the basis of lower
level ones.

In this sense, all efforts in statistical data fusion (Kalman Filters, Particle Filters, Information Filters,
Bayesian extimators , etc.) can be interpreted as an attempt to build "simple" sensing devices for the
"human environment ontology", i.e., sensing devices able to reliably ground symbols by anchoring them
to perceptual data.

This is very important: simple sensors produce results that can be merged at a symbolic level which is
very intuitive for humans , in order to describe more complex situations starting from basic elements.

¬∃x, moving(x, kitchen, t) ∧ opened(fridge) ⇒ alarm(kitchen)

Ontologies can be ideally written in first order predicate logic, however there are language which in-
clude only a subset of first order predicate logic to guarantee computational efficiency and completeness
(description logics, Resource Description Framework RDF, Ontology Web Language OWL, etc.)

Most ontologies are equipped with "reasoners".

When going from simple to complex devices there is an obvious correlation with the dimensions of data
returned.

2.15.5 Other classification methods

Sensing devices can be also classified according to

46

2.15 Sensing Devices Classification 2.15.6 Other classification methods

• Their sensing range / field of view.
• Their capability to sense the distance of objects.

These characteristics can play a fundamental role when coupled with the ability to localize themselves.

Sensing range / Field of view A switch has a sensing range which is 0, however, if it is part of some
artifact (e.g., TV set, fridge, shower tap, etc.), it is localized, i.e., it is associated with a given location
in the environment.

As long as somebody operates the switch, it is possible to say something about the location of the person
with a great accuracy and almost null error probability! (it can be difficult to disambiguate between
different persons).

∃x, is_in (x, shower, t)

Or even, by knowing the XY coordinates of the shower,

∃x, is_at (x, X-shower, Y-shower, t)

In most case, knowing XY coordinates is not relevant in the human environment domain. RFID tags can
be used in the same way.

The problem with sensors that have a low sensing range is that a very dense distribution is required (e.g
RFID carpet). As the sensing range increases (as in the ordered list below), the accuracy in localizing
object decreases and a denser distribution of sensors is required.

• Switches, IMUs
• RFID antenna and tags.
• Temperature, pressure, light, humidity, microphones.
• Passive InfraRed Sensors, TOF camera.
• Laser scanners, motion detection camera.
• Video camera.
• GPS

Capability to sense distance objects Cameras, laserscanner , etc., have a higher sensing range, and
hence positioning accuracy is lower

∃x, is_in (x, bathroom, t)

However, their ability to return an estimated of the distance of an object that is segmented from the
background, allow to infer the object position (as long as the sensors themselves are localized).

Wireless sensor network (WSN) motes (i.e nodes) usually have an even higher sensing range, however
they are able to measure the distance from another mote depending on the power of the received signal.

In general, if sensors provide metric information about the sensed object, it can be used to infer the
position of objects (trilateration, triangulation, inverse perspective, Kalman Filtering, etc.)

• Trilateration requires to measure distances, and it is at the basis of GPS, microphone arrays, and
WSN motes localization.

• Triangulation requires to measure angles, and can be performed with cameras.
• Inverse perspective can be performed with cameras.

Sensing devices can also be classified according to the resolution in returning the distance or the relative
position of the sensed object:

• BOOLEAN switches, IMUs, RFID antenna and tags.
• PIR Sensors, Motion detection camera where alarm frequency depend on distance.
• Microphones, WSN motes.
• Laser scanners, TOF cameras, standard cameras, GPS.

47

2.15 Sensing Devices Classification 2.15.6 Ability to localize themselves

2.15.6 Ability to localize themselves

It is very important, since it constitutes a prerequisite for the sensing range / field of view of devices and
their capability to sense the distance of objects. The position of all sensors which do not move in the
environment can be recorded (this can be expensive, especially in large environments).

The position of moving sensors require the ability to localize themselves:

• GPS provides this information outdoor, and can be coupled to another sensor to provide positioning
data.

• WSN motes are able to localize themselves with respect to each other and a base station on the
basis of the wireless signal strength.

• Video cameras, laserscanner , inertial measurement units, etc., are capable of performing self local-
ization but require complex localization algorithms (basically the same algorithms that are required
to localize objects).

• When the same sensor is used to localize objects and to localize the sensor itself on the basis of
detected objects, we are performing SLAM (Simultaneous Localization and Mapping).

48

Chapter 3

Self-localization

3.1 Introduction

In Ambient Intelligence, it is fundamental that sensors know their own location (self-localization) and
that they are able to compute the of significant actors’/objects’ locations (the problem is the same
as in autonomous robotics)

The main difference with mobile robots relies on the types of sensors that, in Ambient Intelligence, are
available (either distributed in the environment and/or carried around by actors) → the case of an
actor carrying sensors is just a particular case of sensor self-localization.

Sensors must be able to infer their own position in the environment. Hence, sensors which are not able to
self-localize can be coupled with sensors which have this ability (e.g., GPS, accelerometers, other).With
reference to Wireless Sensor networks technology, we call also "unknown nodes" the sensors whose
position must be computed. Similarly, we call "beacons" or "seed nodes" the sensors whose position is
known a priori, which can be used as a reference for "unknown nodes".

In this chapter we will consider geometric 2D localization (returning x, y, φ position and orientation
with respect to a fixed reference frame) and topological localization (returning vertexx , the vertex of
a topological representation of the environment).

3.2 Geometric and topological localization

Geometric 2D localization O(x, y) is a fixed reference frame and Om(xm, ym) is a moving
reference frame. At time t, the goal is to express the configuration

(
x(t), y(t), ψ(t)

)
of Om with respect

to O.

In the case of sensor self-localization, it is often sufficient to consider only x(t), y(t) and to ignore ψ(t).
Differently from mobile robots, localization is not the basis for autonomous navigation. Instead, it is
important for understanding the current context and consequently adapt the system.

Topological localization G is a topological representation of the environment (graph) with m
vertices and n edges. The vertices represent significant locations (room, corridor, door), and the edges
represent adjacency relationships between vertices. The goal is to recognize the vertex which best
"represents" the sensor current position.

49

3.3 Relative localization 3.3.2

⇒ Topological localization is interesting since the sensor position can be expressed through
first order predicates asserting something in the "human activity ontology":

is_in(actor, room1)

linked(room1, door1)

⇒ Geometrical localization instead requires further computation. Ideally:

at(actor,X, Y)

area(room1, Xminr,Xmaxr, Y minr, Y maxr)

at(S,X, Y) ∧ area(P,Xmin,Xmax, Y min, Y max) ∧X ≥ Xmino
∧X ≤ Xmaxo ∧ Y ≥ Y mino ∧X ≤ Y maxo ∧ is_in(S, P)

linked(room1, door1)

However, for this very reason, it allows merging information coming from different sources,
for example using a statistical approach (e.g., Kalman Filter, Particle Filter, etc.)

3.3 Relative localization

3.3.1 Relative vs. absolute localization

Approaches are usually classified as relative localization (incremental methods that measure the new
position of the sensor with respect to the old position) and absolute localization (methods that compute
the absolute position in the space without requiring a previous estimate). The two approaches can be
merged to provide better results.

3.3.2 Human Odometry (1)

One of the methods for relative localization is the inertial navigation. Uses gyroscopes and accelerom-
eters to measure rotation velocity and acceleration. These measures are integrated (twice for accel-
eration) in order to obtain orientation and position. If available, compasses can provide additional
information to be merged.

It does not require external reference points but the positioning error grows with time.

In mobile robotics, odometry is often used for this purpose. A different approach, more similar to
odometry is counting the footsteps of a human actor wearing an accelerometer mounted on her boot:

50

3.3 Relative localization 3.3.2 Human Odometry (1)

One commercially available personal navigation system based on this principle is the Dead Reckoning
Module(DRM) (in 2007). The DRM uses accelerometers to identify steps, and linear displacement is
computed assuming that the step length is constant.

In DRM heading is measured using a digital compass, which is combined with the traveled distance (step
counts) to estimate 2-D position. Under this condition, Pointresearch/Honeywell claims an accuracy
of up to 5% of the traveled distance. However, the requirement for a constant step length is impractical,
since step size changes as a function of operational needs, fatigue, and weight carried by the user.

General Pedestrian Tracking, also called "Personal Dead-reckoning" (PDR) system, tracks and records
or transmits the location of a walking person relative to a known starting position. The PDR system works
by using an Inertial Measuring Unit (IMU) mounted to the user’s boot. The algorithm proposed cor-
rect the drift of the accelerometers in the IMU with every step, thereby preventing the accumulation
of errors.

When equipped with a high-grade IMU, the PDR system produces position errors of under 2% of
distance traveled for walks of up to 15 minutes. Accuracy degrades gracefully in longer walks.

The main problem is that errors increase with time. How to solve it? With error correction through
external information source?

An idea to solve this it’s the Zero Velocity Update: there must be a time interval ∆T = [T1, T2] such
that, unless the sole is slipping on the ground, A is not moving relative to the ground and the velocity
vector of A is VA = 0.

51

3.3 Relative localization 3.3.3 Euler angles

Since the condition VA = 0 is maintained for the significant period of time ∆T and not just for an
instance, we reason that at least sometime during ∆T the velocity vector of Point A is also zero. We
expect the three velocities to show readings of zero during this time. If the reading is not zero, then we
assume that the difference between zero and the momentary reading is the result of accumulated errors
during the step interval. Sometimes, [T1, T2] is found through additional sensors, e.g., pressure sensors.

3.3.3 Euler angles

Euler angles to express the orientation of the body frame, with respect to the fixed frame North-East-
Down:

• ax, ay, az are the linear accelerations along the axes of the body frame (obtained by integrating
accelerometers)

• vx, vy, vz are the linear velocities of the body frame with respect to the fixed frame

• ωx, ωy, ωz are the rotational velocities around the axes of the body frame (obtained through
gyroscopes)

• (x, y, z) is the position of the origin of the body frame with respect to the the fixed frame

• ψ, θ, ϕ are the Euler angles describing the orientation of the body frame with respect to the fixed
frame

The "hat" in the following pages means that we are dealing with measured values, not actual ones.

52

3.3 Relative localization 3.3.4 Human Odometry (2)

This system is not linear, i.e., it cannot be written as ẋ = Ax + Bu because kinematics equations
must be numerically integrated → Euler method (other methods yield a smaller error) → h is the
integration step (properly chosen)

3.3.4 Human Odometry (2)

In general, walking is not the only way in which humans move in the environment, and environment
itself can be different. Finally, the sensor placement can be different. Hence, how Human Odometry
through step counting changes depending on diverse outdoor environments, different motion types
and sensor placements?

We can perform a performance analyses over a dataset that considers 6 real environments (staircases,
flat grass field, uphill road, flat rough terrain - river bed, uphill rough terrain - woods, snow), 6 motion
types (slow walking, normal walking, running, slow crawling, fast crawling, slithering) and 4 sensor
placements (foot, waist, wrist, chest). The dataset has been made publicly available and it’s the HOOD
(Human Odometry Outdoor Dataset). HOOD is a public dataset for the evaluation of HO systems
based on accelerometer and gyroscope data. The dataset is composed of 168 trials, referring to the
combinations listed previously. The same experiment was repeated twice: a person was walking along
a straight line and then walking along a zig-zag path, i.e., alternatively taking left and right turns.
Each trial records the 6DoF acceleration and angular rate values registered during one execution of one
combination and is annotated with the number of steps effectively taken.

Step detection procedures analyse the accelerations generated by the motion to identify each step
taken by the person, implicitly assuming that there is a periodic pattern in the signal.

53

3.3 Relative localization 3.3.5 Visual Odometry

Tests confirm that all motions generate a periodic acceleration pattern along at least one axis, for
at least one sensor placement. For some placements, vertical-stance motions (walking, running) produce
clean periodic patterns along more than one axis (as an example, consider the chest placement for run).
In such cases, merging the information coming from different axes may increase the step recognition
accuracy.

A well-known, simple technique is applied for step detection. The raw acceleration signals ax, ay, az and
the raw angular velocity signals are first filtered with a low-pass filter to remove higher frequencies. A
standard signal analysis algorithm is used to identify the peaks. Given the considerations about merging
axes to increase peak identification accuracy, the overall acceleration and the overall angular velocity
signals are computed as:

3.3.5 Visual Odometry

What if we have additional sensors? Other methods for relative localization are the visual odometry
ones. Visual odometry uses cameras (single cameras, stereo cameras, or omnidirectional cameras). It
is used especially in outdoor applications, e.g., planetary exploration (cameras can be mounted on the
robot body, however there are no examples of such application in Ambient Intelligence).

Significant features are extracted from the picture (e.g., SIFT). When the sensor moves, angular and
linear displacements returns an incremental estimate of the sensor position and orientation.

Scale-invariant feature transform (or SIFT) is an algorithm in computer vision to detect and describe
local features in images (David Lowe in 1999). It is local and based on the appearance of the object
at particular interest points. It is invariant to image scale and rotation, and robust to changes in
illumination, noise, and minor changes in viewpoint. The object is described by set of SIFT features
is also robust to partial occlusion (as few as 3 SIFT features from an object are enough to compute
its location and pose).

Most existing approaches to visual odometry are based on the following stages:

1. Acquire input images: using either single cameras, stereo cameras, or omnidirectional cameras

2. Image correction: apply image processing techniques for lens distortion removal, etc

3. Feature detection: define interest operators, and match features across frames and construct optical
flow field (no long term feature tracking)

54

3.4 Absolute localization 3.4.0

– Feature extraction and correlation (Lucas–Kanade method).

– Construct optical flow field

4. Check flow field vectors for potential tracking errors and remove outliers

5. Estimation of the camera motion of the camera from the optical flow

– Choice 1: Kalman filter for state estimate distribution maintenance

– Choice 2: find the geometric and 3D properties of the features that minimize a cost function
based on the re-projection error between two adjacent images. This can be done by mathematical
minimization or random sampling.

6. Periodic repopulation of trackpoints to maintain coverage across the image.

3.4 Absolute localization

Stereo vision returns 3D spatial information. If some assumptions can be made (e.g. objects and actors
are on a flat terrain) we can segment object from the background with a standard camera and apply
inverse perspective mapping (IPM). This is very efficient, since it is based on a lookup table that
defines correspondences between pixels and real world coordinates.

55

3.4 Absolute localization 3.4.2 Landmarks

IPM localization with a fixed camera:

3.4.1 Landmarks

Landmarks are significant features of the environment in known position (doors, lamps, etc.). The sensor
knows the position of all landmarks in the environment and computes its own position on the basis of
the detected features.

They can be natural landmark (environmental features, SIFT) or artificial landmarks (beacons). In
general, landmarks are chosen/designed in such a way as to be recognized easily (e.g., when using cameras,
they have a high contrast with the background).

The general problem can be described as described in the picture:

Step 2 is usually complex with natural landmarks: this is not the case with artificial landmarks.

Landmarks can be used in different way:

• Topological localization: a single landmark is sufficient

sensors: RFID tags, RF antenna (through signal detection), cameras, etc...

• Geometrical localization with trilateration: three landmarks are necessary in the 2D plane

sensors: RF antenna (through signal strength measurement), cameras, microphones, WSN
etc...

• Geometrical localization with triangulation: three landmarks are necessary in the 2D plane

sensors: directional RF antenna, cameras, etc...

3.4.2 Trilateration

The general idea is to measure the distance from landmarks/beacons-seed nodes. Unknown nodes require
to compute the distance from at least 3 seed nodes (2 seed nodes if an approximate estimate is available).

Each landmark defines a circumference; by intersecting them a single point is obtained:

56

3.4 Absolute localization 3.4.2 Trilateration

The position of landmarks must be known a priori (e.g., in a map). It is possible to take into account
measurement errors, by considering the mean value and the standard deviation.

Formally, it is necessary to solve the following system:

Whichever is the sensor adopted, the approach has the well known problem of error sensitivity due to its
non-linearity: in some configurations, a small error in distance measurements can produce big errors in
position.

If more beacons are available, it is possible to use the additional information, for example, by using
Least Squares Methods:

A camera mounted on the moving sensor or on the human body can ideally be used to measure
distances with natural and artificial landmark. With artificial landmark, if the shape of each landmark
is known, it is easy to compute the distance. Otherwise SIFT features can be used.

57

3.4 Absolute localization 3.4.2 Trilateration

Radio frequency signal strength can be used as a measure of the distance from beacons (ZigBee,
Bluetooth, Wi-Fi, active RFID tags, etc...).1 Beacons broadcast information about their own position in
a fixed reference frame. Unknown nodes work only as relay.

The transmission power at the transmitting device (PTX) directly affects the receiving power at the
receiving device (PRX). The detected signal strength decreases quadratically with the xdistance to the
sender. Next the Received Signal Strength indicator is computed (PRef = 1mW):

In practical scenarios, the ideal distribution of PRX is not applicable, because the propagation of the
radio signal is interfered with a lot of influencing effects (e.g. reflections on metallic objects, superposition
of electro-magnetic fields, diffraction at edges, refraction by media with different propagation velocity,
polarization of electro-magnetic fields, unadapted MAC protocols, inapplicable receiving circuits...).

Another possibility, if available, is to measure link quality indicator (LQI) of the transmission. Ac-
cording to IEEE 802.15.4, LQI is a characterization of the strength and/or the quality of a received
packet. It must be proportional to signal level (RSSI, a signal-to-noise estimation or a combination of
these methods and shall be a value between 0 and 255) and, again, experiments show that LQI is indirect
proportional to distance, but outliers are present.

1The Figures in the following refer to ZigBee

58

3.4 Absolute localization 3.4.2 Trilateration

In this case, trilateration can be problematic. Embedded algorithms such as CL use centroid determi-
nation to calculate their own position:

• In the first phase, all beacons send their position Bj(x, y) to all sensor nodes within their transmis-
sion range.

• In the second phase, all sensor nodes calculate their own position Pi(x, y) by a centroid determina-
tion from all n positions of the beacons in range.

• The localization error fi(x, y) is defined as distance between the exact position Pi(x, y) and the
approximated position Pi(x, y) of a sensor node.

• The idea is to integrate more information sources, by ignoring the information about distance at
all.

We saw the centroid algorithm, now we can introduce as well the weight centroid algorithm:

• The weight wij is a function depending on the distance and the characteristics of the sensor node’s
receivers.

• In WCL, shorter distances are more weighted than higher distances. Thus, w ij and d ij are inversely
proportional

• As an approximation, the correlation is equivalent to the function 1/d

• To weight longer distances marginally lower, the distance is raised to a higher power of g

59

3.4 Absolute localization 3.4.2 Trilateration

Due to using distances only as additional weights, the Weighted Centroid Localization (WCL) is
featuring a very high robustness against scaling errors. In comparison with the least squares method
(LS) the WCL algorithm results in smaller localization errors. As the following figure visualizes, only
correct scaling leads to a smaller localization error in comparison to the weighted centroid localization
(in all other cases, WCL yields smaller errors):

60

3.4 Absolute localization 3.4.3 Global Positioning System (Trilateration)

3.4.3 Global Positioning System (Trilateration)

GPS is constituted of a constellation of 24 satellites with an orbit around the world of 12 hours. GPS
can provide users with longitude, latitude, altitude, and time information (as well as velocity),
given that at least 4 satellites are visible from the receiver.

GPS is made up of three parts: satellites, tracking stations and the GPS receivers owned by users. The
localization algorithms is basically trilateration based on "pseudo-range" measurements: the Master
Control station measures signals from the satellites to incorporate into precise orbital mathematical
models, which are then used to compute corrections for the clocks on each satellite. These corrections,
and orbital (ephemeris) data are then uploaded to the satellites, which then transmit them to GPS user’s
receivers.

61

3.5 Absolute localization 3.5.0 Global Positioning System (Trilateration)

Common (non differential) GPS has an accuracy within 15 meters, which is usually considered suffcient
for car navigation systems. More specifically, GPS measurements are corrupted by different error sources,
which degrade the positioning accuracy:

• ionospheric effects, i.e., changes in the speed of the GPS signals as they pass through the ionosphere,
as a consequence of changing atmospheric conditions

• inaccurate computation of the satellites position due to ephemeris errors

• inaccurate synchronization between the satellite and the receiver clock

• tropospheric effects, i.e., changes in the speed of the GPS signals depending on humidity

• multipath distortion, due to reflecting surfaces in the immediate surroundings of the receiver

• signal blockage, i.e., when the amount of visible satellites changes due to occlusion (e.g., because of
tall buildings), and possibly becomes insufficient for positioning

• numerical errors

A well-known problem with GPS: "Urban Canyons"

D-GPS (Differential GPS) is essentially a system to provide positional corrections to GPS signals.
DGPS uses a fixed, known position to adjust real time GPS signals to eliminate pseudorange errors

62

3.5 Triangulation 3.5.1

3.5 Triangulation

Triangulation is similar to trilateration, but it requires angular information. This information can be
acquired with camera, but for RF localization a directional antenna is required. Again, 3 or more beacons
are required → the three azimuth angles λ1, λ2, λ3 are recorded:

To compute the position through triangulation it is possible to use

1. Pothenot method (or Snellius method), used in topography

2. Circle intersection (considered here)

λ21 = λ2 − λ1 defines a circumference
λ32 = λ3 − λ2 defines another circumference

• In fact, given a circumference, all angles at the circumference λ21(λ32) standing on the same arc
S2S1(S3S2) are identical

• Inversely, the angle λ21(λ32) and the arc S2S1(S3S2) define univocally a circumference with the
previous property

• By intersecting the two circumferences it is possible to infer positions (one position is invalid since
it corresponds to a beacon).

• Next, orientation can be computed by considering one of the three angles λ1, λ2, λ3

• In practice, there are efficient ways for doing this analytically 2

2 Circle intersection algorithm (mathematics details): let us imagine, for sake of simplicity, to choose angles λ12
and λ23, and to consequently consider the circles Cr12 and Cr23. First, we compute the centre of Cr12: by elementary
geometric considerations, we know that the angle between S1 and S2, when measured from the center cr12, is doubled with
respect to λ12. Thus, the distance between cr12 and S1S2 can be computed as follows:

After some computations, this yields the following expression for cr12 coordinates (the same can be done for cr23)

63

3.5 Triangulation 3.5.1 Microphone triangulation

3.5.1 Microphone triangulation

Microphone arrays can be used for triangulation.

Case 1: Sound source is in the far field. We detect only the direction, but not the distance:

Case 2: Sound source is in the close field. We detect the direction, and the distance:

There are some singularities in the equation: λ12 = 0, π corresponds to a circle with infinite radius (i.e., collapsing to a
straight line), a singularity which can be handled by considering a different couple of landmarks.

Next we compute the equation of the straight line connecting the two centres

The distance db2 between Cr12 Cr23 and S2 (i.e., the first intersection of cr12 and cr23)

Since the second intersection (i.e., corresponding to xr , yr) is symmetrical to S2 with respect to cr12cr23 , we compute
it by adding to S2 a vector db2 which is ⊥ to cr12 cr12 and is doubled than db2 (but has an opposite sign)

To compute the orientation ψ

64

3.6 Statistical approaches 3.6.1

How can we compute distances r1, r2, r3 and angles q1, q2, q3. Let c be a constant corresponding to the
velocity of the sound.

t12 =
(r2r1)

c
t23 =

(r3r2)

c

r2
2 = r2

1 + d2 + 2dr1 cos θ1 (cosine rule)

r2
3 = r2

1 + 4d2 + 4dr1 cos θ1 (cosine rule)

θ2 and θ3 computed with the sine rule.

⇒ we can "zoom" with the microphone! Every possible sound source in the environment produces a
sound. If you know that and you want to focus on that area, you shift the signals w.r.t the computed
delays in that area!

3.6 Statistical approaches

In presence of measurement errors, many approaches to localization rely on the idea of merging data
coming from different sensors in a statistical framework.

In particular, incremental approach are merged with absolute approaches; an estimate is first produced
incrementally, and it is subsequently refined through absolute measurement. In this way:

• The errors which are inherent in incremental approaches are periodically reduced through absolute
measurements

• Absolute approaches can take benefit of having an approximate estimate of the sensor position,
which can be corrected as soon as a single absolute measurement is available (instead of waiting for
more measurement to be available, e.g., trilateration or triangulation)

Different approaches are available but we consider here two of them: theKalman Filter and theParticle
Filter

3.6.1 Introduction

The general idea (in the 2D plane) is to compute a probability density/distribution that describes, for
each point in the space (x, y, ψ), the probability that the sensor is in the corresponding configuration.
Such density/distribution is updated whenever new sensorial data are received:

• The Kalman Filter takes into account the first two moments of the probability density (mean and
covariance)

KF is adequate only for position tracking, since it requires an estimate a priori of the position.

• Particle Filters takes into account the whole probability distribution.

PF can be used for Global Localization, I.e., when an initial estimate is absent.

Hence, while in Kalman Filter you describe a probability distribution only with a mean and covariance
(describing only a certain probability distribution → good only for position tracking), the particle filter

65

3.6 Statistical approaches 3.6.2 Kalman filter

can be used instead for general localization, when we don’t give an initial estimate or multiple hypothesis
distributions.

3.6.2 Kalman filter

One-dimensional case: the state to be estimated comprises only the x component.

In this case, we need methods to describe the probability density of x taking into account uncomplete
knowledge/errors in measurement. We will use the probability density to compute an estimate of x to
be fed to other tasks and algorithms (the most probable state?) The Kalman Filter assumes that the
probability density can be described as a Gaussian

1√
2πσ2

e
−

(x− x̄)2

2σ2

The expected value of x is used as an estimated of the state to be fed to other tasks and algorithms:

However, the assumption about the shape of the probability density does not always hold... Suppose,
for example, that we do not have any idea about the initial value of the state (kidnapped robot
problem3)...

...or there exist two symmetrical configuration and we want to take into account both hypotheses...

Two-dimensional case: x = (x, y) is a vector with two components. The probability density function
can be expressed as

K
−

1

2
(x−x̂)T Σ−1(x−x̂)

where K is a normalizing factor and

3Kidnap the robot problem: you ideally steal put the robot, put it in a bag with no localization possibility and then you
release it → General Localization problem

66

3.6 Statistical approaches 3.6.2 Kalman filter

The eigenvector are the two axis of the ellipse → that’s why normally we represent it as an ellipse of
uncertainty rather that 3D bell shaped.

The Kalman Filter solves the general problem of estimating the state x ∈ Rn of a controlled time discrete
process through available measure. The process is described by the following linear4 finite state equation
(w, v are noises)

xk+1 = Axk +Buk + wk

and the measure o ∈ Rm is given by

ok+1 = Hxk+1 + vk+1

The random variables wk and vk represent, respectively, additional noise on the process and on the
measure. It is assumed that they are independent AWG noises

p(w) = N(0, Q) p(v) = N(0, R)

In theory, covariance matrices Q (covariance of the process noise) and R (covariance of the measure-
ment noise) could be different at every time instant, but they are assumed to be constant.

Matrix A (n × n) in the state equations describes the state at instant k depending on the state at the
previous time instant k− 1 in absence of control inputs and noise. It is assumed here that A does
not change in time.

Matrix B (n× l) puts in relation the control input u ∈ Rl with the state x. It is assumed here that
B does not change in time.

Matrix H(m×n) in the measurement model puts in relation the state with measure ok. It is assumed
here that H does not change in time.

Example: Localization of a moving person with beacons. It is obviously possible to use the Kalman
Filter with every kind of sensor: it is sufficient to be able to model the measurement. x ∈ R3 is the state
to be estimated (coordinates x, y, ψ in the 2D plane). Suppose that the person is wearing a IMU. By
oversimplifying, assume that at time instant k, the IMU measures a control input uk. In general, the
state can be updated as

xk+1 = f(xk, uk, w)

Assume that the system is linear: a time instant k + 1, the state can be updated as

xk+1 = Axk +Buk + wk

(noise wk takes into account the fact that Buk does not correspond
to the real displacement in the world)

ok+1 = oi ∈ Rl is the measurement, i.e., the azimut angle l of the ith beacon.

The relationship between oi and xk (xk, yk, ψk) is obviously

4The Kalman Filter relies on a linear assumption! We have to use the Extended Kalman Filter to do a sort of
"linearization"

67

3.6 Statistical approaches 3.6.2 Kalman filter

Assume however that, for every beacon i, such relation is linear, i.e. in the following figure

How it corrects its errors?

We define x̂−k ∈ Rn (notice the superscript "minus") as the a priori estimate of the state a time k. This
estimate follows from knowing the process in instants which precede k and from the control input uk a
time k. We define x̂k ∈ Rn (without the superscript "minus") the a posteriori estimate at time k. This
estimate follows from the a priori estimate and the measurement ok at time k.

We define the error of the a priori estimate and the error of the a posteriori estimate as:

∆x−k = xk − x̂−k
∆xk = xk − x̂k

The covariance of the a priori error is defined as:

P−k = E[∆x−k ∆x−Tk]

whereas the covariance of the a posteriori error is defined as

Pk = E[∆xk∆xTk]

At time k+1, the a posteriori estimate x̂k+1 is computed as a lin. combination of the a priori estimate x̂−k+1

and a weighted difference between the current measurement ok+1 and a prediction of the measurement
Hx̂k+1

x̂k+1 = x̂−k+1 +K(ok+1 −Hx̂−k+1)

In our case (beacons):

68

3.6 Statistical approaches 3.6.2 Kalman filter

• x̂−k+1 (a priori estimate) is provided by the IMU

• ok+1 (measurement) is the azimuth direction of the i th beacon

• x̂k+1 is the new a posteriori estimate (which will be used to update dead reckoning)

The difference between measurement and prediction is called innovation:

ok+1 = Hx̂−k+1

Innovation reflects the difference between the predicted measurement and the measurement that has been
really done. When innovation is null, it means that there is a perfect agreement between prediction and
actual measurement that is, the estimate of the position corresponds to the real position.

It is required to compute K, which determines the relative weight of the a priori estimate and the
innovation in computing the a posteriori estimate. The matrix K is chosen in such a way as to minimize
the covariance of the a posteriori error Pk. A possibility is:

Kk+1 = P−k+1H
T (HP−k+1H

T +R)−1

In this way, the a posteriori estimate minimizes the a posteriori error (the Kalman Filter is optimal).
Here it is not reported why this choice for K leads to optimality.

Some observations:

• When the measurement error covariance R tends to zero, K weights innovation more:

lim
Rk→0

Kk+1 = H−1

→ Intuitively, the system relies more on the measurement

• Viceversa, when the covariance of the a priori (state) error P−k tends to zero, K weights innovation
less:

lim
Pk→0

Kk+1 = 0

→ Intuitively, the system relies more on the prediction

Kalman Filter Algorithm Let us describe the algorithm to update the estimate of the state through
the Kalman Filter:

◦ The Filter keeps in memory the first two moments of the probability distribution xk:

E[xk] = x̂k (a posteriori estimate of the state)

E[(xk − x̂k)(xk − x̂k)T] = Pk (a posteriori estimate of the error covariance)

◦ Kalman Filter equations can be divided into two groups:

Equations for updating the estimate in time, which are responsible of projecting forward in
time the current estimate of the state and of the error covariance

Equations for updating the estimate as a consequence of measurements, which are respon-
sible of incorporating a new measurement in the a priori estimate, with the purpose of obtaining a
new a posteriori estimate.

1. Time update phase:

Filter inizialization: (x0, P0): x0P0 chosen by the user or computed through triangulation

69

3.6 Statistical approaches 3.6.3 Particle Filter

2. Measurement update phase:

(a) Compute the Kalman gain Kk

(b) Acquire measurement ok+1

(c) Produce the a posteriori estimate of the state
(d) Produce the a posteriori estimate of the error covariance

Problems with the Kalman Filter:

• It is not always obvious how to estimate P and R ; moreover, the process and measurement noise
do not necessarily have a Gaussian profile.

• It assumes that the process and the measurement are linear (not true in this case). It is necessary
to use the Extended Kalman Filter, which linearize the process and /or the measurement in the
current estimate. EKF is no more optimal.

• The approach is adequate when the whole pdf has a Gaussian profile, I.e., for position tracking, not
for global localization.

An alternative is the Particle Filter.

3.6.3 Particle Filter

The main objective of particle filtering is to "track" a variable of interest as it evolves over time. It
works with non Gaussian and potentially multi-modal pdf.

The idea is to represent the posterior probabilities by a set of randomly chosen5 weighted
samples. It constructs a sample-based representation of the entire pdf. Such representation is modified
as the state evolves and/or when measurements are available.

Increasing number of samples implies (almost sure) convergence to true pdf.

In particular, to do this, multiple copies of the variable of interest are used, each associated with a weight
that signifies its quality. An estimate of the variable of interest is obtained by the weighted sum of all
particles. The algorithms is recursive and operates in two phases: prediction and update.

• Prediction: after each action, each particle is modified according to the existing model by adding
noise

• Update: each particle’s weight is re-evaluated based on the sensory information, by eliminating
particles with small weights (re-sampling)

More formally:

• The variable of interest (the pose of the person at time k)

xk = [xk, yk, ψk]T

is represented as a set of M samples (particles) Sk

• Sk = [xkj , w
k
j], j = 1...M where each particle is a copy of the variable of interest and wj defines

the contribution of this particle to the overall estimate of the variable.
• If at time t = k + 1 we know the pdf of the system at the previous instant t = k it is possible to

model the effect of the action to obtain an a priori estimate at time t = k+ 1 (prediction phase)
• Next, the information obtained for sensing is used to update the particle weights in order to accu-

rately describe the pdf (update phase)
• Finally, a method of evaluation is used to obtain an estimate of the pose starting from all particles

and their corresponding weights (e.g., weighted mean, best particle, weighted mean in a small
window around the best particle)

5"randomly chosen": "Monte Carlo" method (we are playing roulette / throwing the dice)

70

3.6 Statistical approaches 3.6.3 Particle Filter

The prediction does not make any assumption on the fact that the process is linear or the noise is
Additive White Gaussian Noise. For each particle xkj ∈ Sk we have:

xk+1
j = f(xkj , u

k, wk)

Nevertheless, there is a problem: after a few steps, particles tend to disperse depending on the noise:

• σtrs is the error due to translation

• σdrft is a lateral drift due to orientation errors

71

3.6 Statistical approaches 3.6.3 Particle Filter

The solution is the resampling: when some conditions hold, the set Sk = [xkj , w
k
j], j = 1...M is

substituted with a new set S′k = Sk(index). Depending on their weight, some particles in Sk are deleted
and some other particles are replicated. All weights in S′k are identical and normalized, i.e., w′j = 1/M .
The conditions for resampling are computed as follow:

→ when the effective sample size falls below a given threshold, particles are resampled.

Different resampling schemes have been proposed.

• Select with replacement: for each particle, the number of replica that are propagated statistically
depend on the particle weight.

• Technical details: for each particle j, compute the cumulative sums of weights from particle l = 0
to particle l = j. Store all values in Q.

• Compute M random numbers, each with uniform distribution between 0 and 1. Store all values in
T . Sort T in increasing order.

72

3.6 Statistical approaches 3.6.4 Particle Filter

After an action, the observation done oki is used to update the weights:

• Measurement model is

• Therefore, for every particle xkj , the estimated measurement okij is

• In particular, at time k+1, the weight is set as proportional to the probability of xk+1
j given oik + 1

• This is simpler to be computed by assuming the measurement noise ν as Gaussian (however, it is
not necessary)

• Weights are then normalized such that their sum equals to 1.

How do we chose the best pose in which we are after having computed all the probabilities? There are
different techniques in order to choose the best pose:

73

3.6 Statistical approaches 3.6.4 Summary

3.6.4 Summary

Calculation of belief for robot localization:

The equation on this slide shows the formalization of the steps taken in the particle filter algorithm.
It is derived from applying Bayes rule to the posterior, and then using the Markov assumption. While
executing the particle filter algorithm, we are calculating this equation from right to left.

→ First we start with the pdf from the last time step, and then we multiply it by the motion
model in the "prediction" step to get q(x), the prior probability. The integral is there
only to say that we can end up in the same state in time (t) from more than one state in time
(t−1), and thus we have to integrate over the states from time (t−1). But we do not have to
worry about this detail in the particle filter algorithm, since the particle representation takes
care of the integral.

→ Next, we find the importance weights w(x) using the perception model and normalize
them so that they sum to 1.

→ q(x)× w(x) = p(x) the posterior probability, which we use resampling based on the
importance weights to achieve.

More in detail:

1. Prediction: for each particle, sample and add random, noisy values from action model:

Resulting proposal distribution (q(x)) approximates:

74

3.6 Statistical approaches 3.6.4 Summary

→ in the prediction step, we take each particle and add a random sample from the motion
model. In the figure, the robot starts from the lower left, and moves to the upper right. The
resulting position, from the motion model, will be somewhere in that cloud of particles. The
resulting distribution of particles approximates the prior distribution.

2. Update: each particle’s weight is the likelihood of getting the sensor readings from that particle’s
hypothesis:

The weight associated with each particle is:

w(x) =
p(x)

q(x)
= p(zt|xt)

normalized so that all the weights sum to 1.

→ During the update step, we take the sensor measurements and assign each particle a weight
that is equal to the probability of observing the sensor measurements from that particle’s
state. Those weights are then normalized so that they sum to 1. In the figure, the robot has
observed the ’stationary robot’ landmark at the top left, and based on that measurement, it has
assigned weights to each particle. Darker particles have higher weights.

3. Resample: new set of particles are chosen such that each particle survives in proportion to its
weight

Resulting distribution p(x) is:

→ Finally, in the resample step, a new set of particles is chosen so that each particle survives in
proportion to its weight. As you can see in the picture, the weighted cloud of particles turns
into the somewhat more condensed and smoother cloud of unweighted particles on the right. Highly
unlikely particles at the fringe are not chosen, and the highly likely particles near the center of the
cloud are replicated so that the high-probability region has a high density, correctly representing
p(x), our posterior distribution.

75

3.6 Statistical approaches 3.6.4 Summary

76

Chapter 4

Context-awareness

4.1 What is the context?

Humans are quite successful at conveying ideas to each other and reacting appropriately. This is
due to many factors:

• the richness of the language they share;

• the common understanding of how the world works;

• and an implicit understanding of everyday situations.

When humans talk with humans, they are able to use implicit situational information, or context,
to increase the conversational bandwidth.

“The context of the phonebook can be changed and another meaning can be derived from it:
ask a hard life related question of it and start reading. Inspiration can then be found in the
names numbers and addresses. Try it, it is called the phonebook oracle.”
– Lourens Coetzer

Devices are often used in changing environments, yet they do not adapt to those changes very well:
although moving away from the desktop brings up a new variety of situations in which an application
may be used, computing devices are often left unaware of their surrounding environment.

One hypothesis that a number of ubiquitous computing researchers share is that enabling devices and
applications to automatically adapt to changes in their surrounding physical and electronic en-
vironments will lead to an enhancement of the user experience. Current examples of context awareness
are based on localization:

• Map-based information;

• Items available in a shop

But contex awareness and situational awareness are usually given a different interpretation.

Understanding what is context will enable application designers to choose what context to use in their
application. Understanding how context can be used will help application designers determine what
context-aware behaviors to support in their applications. Finally, architectural support will enable
designers to build their applications more easily.

In the work that first introduces the term “context-aware”, Schilit and Theimer refer to context as
location, identities of nearby people and objects, and changes to those objects (i.e., where you are, who
you are with, and what resources are nearby): These types of definitions that define context by example
are difficult to apply. When we want to determine whether a type of information not listed in the
definition is context or not, it is not clear how we can use the definition to solve the dilemma.

Other definitions have simply provided synonyms for context; for example, referring to context as
the environment or situation: definitions that simply use synonyms for context are extremely difficult to
apply in practice.

77

4.1 What is the context? 4.1.2 Categories of Context

Pascoe defines context to be the subset of physical and conceptual states of interest to a particular
entity.

These definitions are too specific. Context is all about the whole situation relevant to an application
and its set of users.

Anind Dey proposes the following definition:

“Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.”
– Dey A., “Understanding and Using Context”,
in Personal and Ubiquitous Computing 5 : 1, Feb 2001, Pages 4-7

If a piece of information can be used to characterize the situation of a participant in an interaction,
then that information is context.

Take the canonical context-aware application, an indoor mobile tour guide, as an example:

• Entities: the user, the application and the tour sites.

→ The weather is part of the context? No, the weather does not affect the application because it is
being used indoors. Therefore, it is not context.

→ The presence of other people is part of the context? Yes, the presence of other people can be used
to characterize the user’s situation. If a user is traveling with other people, then the sites they visit
may be of particular interest to her. Therefore, the presence of other people is context because it
can be used to characterize the user’s situation.

4.1.1 Categories of Context

Given the diversity of context information, it is useful to attempt to categorize it.

The entities we identified as most relevant are places, people and things:

• Places are regions of geographical space such as rooms, offices, buildings, or streets.

• People can be either individuals or groups, co-located or distributed.

• Things are either physical objects or software components and artifacts, for instance an application
or a file.

We introduce four essential categories, or characteristics, of context information:

• Identity refers to the ability to assign a unique identifier to an entity.

• Location is more than just position information in 2-D space. It is expanded to include orientation
and elevation, as well as all information that can be used to deduce spatial relationships between
entities, such as co-location, proximity, or containment.

• Status (or activity) identifies intrinsic characteristics of the entity that can be sensed. For a place,
it can be the current temperature, or the ambient light

• Finally, time is context information as it helps characterize a situation. In some cases, just knowing
the relative ordering of events or causality is sufficient.

Simple inference, or derivation, of context information happens when related context in-
formation is deduced from a single known piece of context information.

More complex inference is required when context is deduced from multiple sources of in-
formation

4.1.2 Context-aware computing

Context-aware computing was first discussed by Schilit and Theimer in 1994. They described context-
awareness in systems the ability to:

78

4.1 What is the context? 4.1.2 Context-aware computing

“adapt according to its location of use, the collection of nearby people and objects, as well as
changes to those objects over time. ”

Dey proposes the following definition:

“A system is context-aware if it uses context to provide relevant information and/or services
to the user, where relevancy depends on the user’s task. ”

For Dey there are three categories of features that a context-aware application can support:

• presentation of information and services to a user;

• automatic execution of a service for a user;

• tagging of context to information to support later retrieval.

The first category, presenting information and services, refers to applications that either present
context information to the user, or use context to propose appropriate selections of actions to the user
(e.g., showing the user’s or her vehicle’s location on a map, indicating nearby sites of interest, presenting
a choice of printers close to the user etc...).

The second category, automatically executing a service, describes applications that trigger a com-
mand, or reconfigure the system on behalf of the user according to context changes (e.g., car navigation
systems that recompute driving directions when the user misses a turn; a recording whiteboard that senses
when an informal and unscheduled encounter of individuals occurs and automatically starts recording
the ensuing meeting, a “teleport” system in which a user’s desktop environment follows her as she moves
from workstation to workstation etc...).

In the third category, attaching context information for later retrieval, applications tag captured
data with relevant context information (e.g, a zoology application tags notes taken by the user with the
location and the time of the observation; the informal meeting capture system mentioned above provides
an interface to access informal meeting notes based on who was there, when the meeting occurred and
where the meeting was located etc...).

A case study: ORPHEUS One of the main issues to be addressed by first responders engaged in
crisis scenario is resource localization and tracking. In outdoor scenarios the problem can be dealt with
through the use of Global Positioning Systems technology, but a different approach must be pursued
in all situations when the GPS signal is be absent or heavily corrupted by noise (e.g., inside buildings,
tunnels and subways, under heavy tree canopy, etc.).

A precise positioning of all available resources is of the uttermost importance, especially when resources
are limited or particularly costly, like for survey missions, search & rescue, or rapid intervention in
case of terrorist or organized crime attack. In all these scenarios, resource localization plays a key role
for exploring the environment, planning evacuation routes (possibly considering alternatives whenever
a previously planned route becomes unavailable) and defining coordinated intervention strategies and
optimal resource allocation.

The solution is to implement wearable computing: embedded processors, lightweight sensors and
actuators (inertial sensors, environmental sensors, biofeedback) all using wireless communication (short
range/long range). As absolute localization systems they used laser rangefinders (50 × 50 × 70mm)
that allow to update the map of the environment and allow to reset the position in the environment →
SLAM (simultaneous localization and mapping; statistical approaches: Kalman/Particle filters, etc)

79

4.1 What is the context? 4.1.3 Support for Building Applications

The information dynamically acquired by the sensor network and by first responders will constitute the
conditioning information set for a family of control schemes, enabling decision support (e.g., suggesting
optimal evacuation routes/plans, optimal resource allocation etc...).

Which kind of context-aware behaviour could be interesting?

• Context awareness (of something/somebody): being aware of all information related to something/-
somebody (position, environmental state, health state,...)

• Situational awareness: how the context of multiple objects or subjects evolve in time, and which
information is relevant at a give instant.

4.1.3 Support for Building Applications

Application builders may need help moving from the design to an actual implementation.This help can
come in two forms:

• The first is a combination of architectural services or features that designers can use to build
their applications from;

• The second form is abstractions that allow designers to think about their applications from a
higher level.

Dey proposes an architecture, the Context Toolkit, that contains a combination of features and ab-
stractions to support context-aware application builders.

The requirements for dealing with Context are:

1. Separation of concerns;

2. Context interpretation;

3. Transparent, distributed communications;

4. Constant availability of context acquisition;

5. Context storage;

6. Resource discovery.

80

4.1 What is the context? 4.1.3 Support for Building Applications

1. Separation of concerns There are two common ways in which context has been handled:

• connecting sensor drivers directly into applications
• using servers to hide sensor details

By separating how context is acquired from how it is used, applications can now use contextual information
without worrying about the details of a sensor and how to acquire context from it. These details are not
completely hidden and can be obtained if needed (see universAAL section)

2. Context Interpretation There is a need to extend the notification and querying mechanisms to
allow applications to retrieve context from distributed computers.

There may be multiple layers that context data go through before reaching an application: from an
application designer’s perspective, the use of these multiple layers should be transparent. In order to
support this transparency, context must often be interpreted before it can be used by an application.
In order for the interpretation to be easily reusable by multiple applications, it needs to be provided
by the architecture.

3. Transparent, Distributed Communications When dealing with context, the devices used to
sense context most likely are not attached to the same computer running an application that will react
to that context.

• For example, an indoor infrared positioning system may consist of many infrared emitters and
detectors;

• In addition, multiple applications may require use of that location information and these applica-
tions may run on multiple computing devices;

• The fact that communication is distributed should be transparent to both sensors and applications;
• A related requirement is the need for a global timeclock mechanism.

81

4.1 What is the context? 4.1.4 Support for Building Applications

4. Constant Availability of Context Acquisition Differently from GUI applications, context-aware
applications should not instantiate individual components that provide sensor data, but must be
able to access existing ones, when they require it.

• Multiple applications may need to access the same piece of context.
• This leads to a requirement that the components that acquire context must be executing indepen-

dently from the applications that use them.
• This eases the programming burden on the application designer.
• Because these components run independently of applications, there is a need for them to be persis-

tent, available all the time.

5. Context Storage and History A requirement linked to the need for constant availability is the
desire to maintain historical information.

• A component that acquires context information, should maintain a history of all the context it
obtains.

• Context history can be used to establish trends and predict future context values.
• A component may collect context when no applications are interested in that particular context

information. Therefore, there may be no applications available to store that context. However,
there may be an application in the future that requires the history of that context.

6. Resource Discovery In order for an application to communicate with a sensor (or rather its
software interface), it must know what kind of information the sensor can provide, where it is located
and how to communicate with it (protocol, language and mechanisms to use).

• To be able to effectively hide details from the application, the architecture needs to support a form
of resource discovery.

• With a resource discovery mechanism, when an application is started, it could specify the type of
context information required.

• The mechanism would be responsible for finding any applicable components and for providing the
application with ways to access them.

82

4.1 What is the context? 4.1.4 Context toolkit

4.1.4 Context toolkit

The context toolkit was probably the first attempt to face the problem of context-awareness at an
architectural level, but now the project has not been updated since 2003.

Software can be downloaded here http://contexttoolkit.sourceforge.net/

The applications though were not very exciting... some demonstrations are available in the “Georgia Tech
Aware Home”.

The Context Toolkit architecture is built on the concept of enabling applications to obtain the context
they require without them having to worry about how the context was sensed: it makes the distribution
of the context architecture transparent to context-aware applications, mediating all communications
between applications and components.

◦ Context Toolkit Widgets: A context widget is responsible for acquiring a certain type of
context information and making that information available to applications in a generic manner,
regardless of how it is actually sensed. Applications can access context from widgets using traditional
poll and subscribe methods, commonly available with graphical user interface (GUI) widgets.
While in most GUI applications widgets are instantiated, controlled and used by only a single appli-
cation, context-aware widget based applications do not instantiate individual context widgets, but
must be able to access existing ones, when they require.
To meet this requirement, context widgets operate independently from the applications that use them:
this eases the programming burden by not requiring to maintain the context widgets, while allowing an
easy communication with them.
Because context widgets run independently of applications, there is a need for them to be textbfpersis-
tent, available all the time.
Moreover, context widgets should automatically store the history of the context they sense and make
this history available to any interested applications so that they are able to predict the future actions
or intentions of users.
This prediction or interpretations functionality is encapsulated in the context interpreter abstraction:
interpreters accept one or more types of context and produce a single piece of context (i.e. converting
from a name to an e-mail address or interpreting context from all the widgets in a conference room to
determine that a meeting is occurring).
Widgets also provide a separation of concerns by hiding the complexity of the actual sensors used
from the application. Whether the location of a user is sensed using different sensors or a combination
of these, it should not impact the application.

To access context information applications can:

• be notified to changes in the widget context;

• query a widget;

• poll a widget.

They abstract context information to suit the expected needs of applications: a widget that tracks the
location of a user within a building or a city notifies the application only when the user moves from one
room to another, or from one street corner to another, and does not report less significant moves to the
application.

83

http://contexttoolkit.sourceforge.net/

4.1 What is the context? 4.1.5 Context toolkit

Widgets provide reusable and customizable building blocks of context sensing: a widget that tracks
the location of a user can be used by a variety of applications, from tour guides to car navigation to office
awareness systems.

◦ Context Toolkit Interpreters Interpreters transform context information by raising its level of
abstraction: typically takes information from one or more context sources and produces a new piece of
context information.
Simple inference or derivation transforms geographical coordinates (low level of abstraction) into street
names (higher level of abstraction) using for example a geographic information database.
Complex inference using multiple pieces of context also provides higher-level information.
For example, if a room contains several occupants and the sound level in the room is high, one can guess
that a meeting is going on by combining these two pieces of context.

◦ Context Toolkit Aggregators Aggregation refers to collecting multiple pieces of context informa-
tion that are logically related into a common repository.
The need for aggregation comes in part from the distributed nature of context information which must
often be retrieved from distributed sensors, via widgets.
Rather than have an application query each distributed widget in turn, aggregators gather logically re-
lated information relevant for applications and make it available within a single software component.
Accessing information provided by aggregators is, therefore, a simplified operation for the application,
and several applications can access the same information from a single aggregator.
For example, an application may have a context-aware behavior to execute when the following conditions
are met: an individual is happy, located in his kitchen, and is making dinner. With no support for
aggregation, an application (via the specification mechanism) has to use a combination of subscriptions
and queries on different widgets to determine when these conditions are met.
In conclusion:

• an aggregator is responsible for collecting all the context about a given entity;

• an aggregator has similar capabilities as a widget;

• applications can be notified to changes in the aggregator’s context, can query/poll for updates, and
access stored context about the entity, represented by the aggregator.

◦ Context Toolkit Services Services are components in the framework that execute actions on behalf
of applications. A context service is an analog to the context widget.
Whereas the context widget is responsible for retrieving state information about the environment from
a sensor (i.e.input), the context service is responsible for controlling or changing state information
in the environment using an actuator (i.e. output). As with widgets, applications do not need to
understand the details of how the service is being performed in order to use them.
Context services can be synchronous or asynchronous. An example of a synchronous context service is to
send an e-mail to a user. An example of an asynchronous context service is to send a message to a user
on a two-way pager containing a number of possible message responses.

◦ Context Toolkit Discoverers Discoverers are the final component in the conceptual framework.
They are responsible for maintaining a registry of what capabilities exist in the framework, including
the knowledge about widgets, interpreters, aggregators and services currently available.
When any of these components are started, it notifies a discoverer of its presence which comprises how
to contact that component (e.g. language, protocol, machine hostname) and its capabilities:

• widgets indicate what kind(s) of context they can provide;

• interpreters indicate what interpretations they can perform;

• aggregators indicate what entity they represent and the type(s) of context they can provide about
that entity;

• Services indicate what context-aware service they can provide and the type(s) of context and infor-
mation required to execute that service.

84

4.2 What is the context? 4.2.0 Context Toolkit Situation Abstraction

4.1.5 Context Toolkit Situation Abstraction

A situation is an abstraction at a level above widgets, interpreters and aggregators. Currently, appli-
cation designers need to explicitly poll and subscribe to widgets and aggregators for context information
and call on interpreters to determine when relevant entities are in a particular state so they can take
action. This collection of states can be described as a situation.
The situation abstraction is exactly that: a description of the states of relevant entities. The Con-
text Toolkit is responsible for the translation of the description to the "wiring" of the context components
and also for determining when the individual elements of the situation have been collectively satisfied.

4.1.6 Context Toolkit implementation

The ContextToolkit provides designers with the abstractions above: widgets, interpreters, aggregators,
services and discoverers as well as a distributed infrastructure. Developed in Java, although program-
ming language-independent mechanisms were used, allowing the creation and interoperability of widgets,
interpreters, aggregators and applications in any language (applications can be been written in C++,
Frontier, Visual Basic and Python.). Each widget, aggregator, interpreter and discoverer component is
implemented as a single process. Typically, different components are distributed on different processors.
Currently, it utilizes a simple object communication mechanism based on HTTP (HyperText Transfer
Protocol) and XML (eXtensible Markup Language) encoding of messages.

Example: Active Badge Call-Forwarding

The Active Badge application helps a receptionist to forward a phone calls to the extension nearest the
recipient’s most recent location in a building. A dynamically updating table displays the phone extension
and location for each person in the system. In addition, a user can:

• request a list of the locations an individual has been in the past five minutes or past hour;

• locate an individual and find the names of others in the same location;

• request a list of the people at a particular location;

• request to be notified when an individual is next sensed by the system.

The Active Badge location system consisted of a number of infrared sensors distributed throughout a
building that detected the presence of user-worn Active Badges.
A Location Widget represents each sensor: when a sensor detects a badge, its corresponding Location
Widget determines the wearer’s identity (using the Badge ID to Name Interpreter), stores this information
and passes it to User Aggregator.
Each User Aggregator (one for each user in the system) collects and stores all the location information
from each of the Location Widgets for their corresponding user and makes it available to the application.
All of these components (the interpreters, aggregators and widgets) register with the Discoverer to allow
them to locate each other as needed (widgets need to locate the Badge ID to Name Interpreter and the
aggregator needs to locate the widgets).
The application then uses the Discoverer to locate the User Aggregators and the Room to Phone Extension
Interpreter.

85

4.2 Context assessment with BN 4.2.1

4.2 Context assessment with Bayesian Networks

The purpose of this section is to build a model to infer higher level contexts starting from basic blocks and,
ultimately, from sensor readings. In the context toolkit terminology, we want to build the “interpreters”.
There are several approaches to do this:

– Bayesian networks

– Dynamic Bayesian Networks

– Hidden Markov Models

– Ontologies / Description Logics

4.2.1 Bayes and joint probability tables

Let A be a discrete random variable with possible states dom(A) = {a1, ..., an} (also known as the the
domain of the variable):

• Then P (A) denotes a probability distribution over these states (i.e., a function which assigns
a probability value in the range [0 1] to each value in the domain)

P (A) = (x1, ..., xn) xi ≥ 0
n∑
i=1

xi = 1

where xi is the probability of A being in state ai.

• The probability of A being in state ai is denoted P (A = ai) or simply P (ai) when obvious from the
context.

• If the variable B has dom(B) = b1, ..., bm, then P (A,B) represents the joint probability distri-
bution over the Cartesian product dom(A)× dom(B).

• P (A,B) assigns a probability value in the range [0 1] to each couple of states (ai, bj).

• P (A = ai, B = bj) or simply P (ai, bj) denotes the probability of A being in state ai and B being
in state bj .

• P (A,B) can be represented with an n×m table containing the numbers P (ai, bj).

Let’s make an examples with boolean variables:

– Variable A: outside_raining

– Variable B: slippery_floor

– dom(A) = dom(B) = {T, F}
→ There are two different ways of representing the joint probability P (A,B):

• Similarly, P (A|B) is a function which assign a probability value in the range [0 1] to each couple of
states (ai, bj)

• P (A = ai|B = bj) or simply P (ai|bj) represents the conditioned probability of A being in state ai
given that B is in state bj

• P (A|B) should be considered as a set of probability distributions, one for each value of the
conditioning variable

• P (A|B) can be represented with an n×m table containing the numbers P (ai|bj).

86

4.2 Context assessment with BN 4.2.1 Bayes and joint probability tables

Let’s make an examples with boolean variables:

– Variable A: outside_raining
– Variable B: slippery_floor
– dom(A) = dom(B) = {T, F}
→ P (A|B) is a couple of probability distribution, one for each value of the conditioning variable:

• For all states ai of A and bj of B we have

P (ai|bj)P (bj) = P (ai, bj)

• This procedure can be applied to a whole table, i.e., to all the n×m configurations (ai, bj)

P (A|B)P (B) = P (A,B)

• Since P (A,B) is obviously equal to P (B,A), this leads to the Bayes rule:

P (A|B)P (B) = P (B|A)P (A) = P (A,B)

• From a table P (A,B), the probability distribution P(A) can be calculated. For a state ai

P (ai) =

m∑
j=1

P (ai, bj) =

m∑
j=1

P (ai|bj)P (bj)

This calculation is called marginalization, and we say that the variable B is marginalized out of
P (A,B)

P (A) =
∑
B

P (A,B)

Let’s make an examples with boolean variables:

– Variable A: outside_raining
– Variable B: slippery_floor
– dom(A) = dom(B) = {T, F}
→ For computing P (A) it is sufficient to sum the probabilities of all combinations (or “possible world”)

such that A is T . For example, in this case P (A) = 0.81:

The term marginalization can be better understood by considering the alternative representation
of P (A,B):

87

4.2 Context assessment with BN 4.2.2 Belief updating, marginal and conditional independence

Let’s make another example with three boolean variables:

– Variable A: cavity (I have a cavity in my tooth)

– Variable B: tootache (I have a tootache)

– Variable C: catch (the proble catches the cavity)

→ Which is P (A = T and B = F) ? (i.e., I have a cavity but not a tootache?)

Using an alternative representation:

!!! Given a joint distribution, e.g. P (X,Y, Z) we can compute any distributions over any
smaller sets of variables. !!!

4.2.2 Belief updating, marginal and conditional independence

A basic task in artificial intelligence is belief updating: (1) you are considering a part of the world,
and you have a certain belief in the state of a particular variable A. Next (2) you receive the information
that the state of the variable B is b, and you wish to use this information to update your belief in the
state of A.
→ formally, you have a prior distribution P (A) and, by knowing the joint probability distribution, you
wish to compute the posterior P (A|b).
For example, consider the previous case “a person goes to the dentist”:

– The prior probability of having a cavity P (cavity = T) should be revised if you know that there is
toothache

P (cavity = T |toothache = T)

– It should be revised again if you were informed that the probe did not catch anything

P (cavity = T |toothache = T, catch = F)

– What about the probability to have cavity given that it is a sunny day? They are not correlated
(see later):

P (cavity = T |sunny = T) = P (cavity = T)P (sunny = T)

– What happens in term of “possible worlds” if we know the value of a random var (or a set of random
vars)? Some worlds are ruled out, others change their probability.

→ Suppose that I have a cavity, i.e., A = T : how can I compute the probability of having a
tootache? Recalling that P (B|A) = P (B,A)/P (A) we have:

88

4.2 Context assessment with BN 4.2.2 Belief updating, marginal and conditional independence

In general, to express the joint probability in terms of conditioned probabilities it is possible to use
the chain rule:

P (X1, ...Xn−1, Xn) =

P (X1, ...Xn−1)P (Xn|X1, ...Xn−1) =

P (X1, ...Xn−2)P (Xn−1|X1, ...Xn−2)P (Xn|X1, ...Xn−1) =

(...)

P (X1)P (X2|X1)...P (Xn−1|X1, ...Xn−2)P (Xn|X1, ...Xn−1)

For our previous example:
P (A,B,C) = P (A)P (B|A)P (C|A,B)

Do we always need to revise beliefs when there is a new evidence? ? It depends if variables are
dependent or not.

→ We say that variables A and C are marginally independent if

P (ai|ck) = P (ai) ∀i, k can be written as P (A|C) = P (A)

Then, in they are not dependent, the useful consequence is the following one:

P (A = ai, B = bj) = P (A = ai|B = bj)P (B = bj) = P (A = ai)P (B = bj)

If A is not dependent on B, new evidence on B does not affect current belief in A. As anticipated before:

– Variable A: cavity (I have a cavity in my tooth)

– Variable B: toothache (I have a tootache)

– Variable C: catch (the proble catches the cavity)

– Variable D: sunny (today is a sunny day)

P (A,B,C,D) = P (A,B,C)P (D)

The joint probability can be stored using two smaller tables (with 8 and 2 entries) instead of a big
one (with 16 entries)! → independence leads to few, smaller tables

Marginal independence is rare. However there is another (weaker but very important) type of indepen-
dence:

• The variables A and C are conditionally independent given the variable B if

P (ai|bj) = P (ai|bj , ck) ∀i, j, k

this means that if the state of B is known, than no knowledge of C will alter the proba-
bility of A.

• This can also be written as
P (A|B) = P (A|B,C)

→ That’s very important! That means that if you know B, A and C will become independent.

Let’s consider the previous example:

89

4.2 Context assessment with BN 4.2.2 Belief updating, marginal and conditional independence

– Variable A: cavity (I have a cavity in my tooth)

– Variable B: tootache (I have a tootache)

– Variable C: catch (the proble catches the cavity)

→ Are tootache and catch independent?

P (B|C) = P (B)?

BUT if I have a cavity, does the probability that the probe catches it depend on whether I have a
toothache?

P (C|B,A = T) = P (C|A = T)

What if I haven’t got a cavity? If you try to compute them, it turns out they are conditionally
independent

P (C|B,A = F) = P (C|A = F)

→ Both toothache and catch are directly caused by the cavity, but neither has a direct effect on the
other.

– In general,C Catch is conditionally independent of B (Toothache) given A (Cavity):

P (C|B,A) = P (C|A)

Equivalent statements are:

P (B|A,C) = P (B|A) P (B,C|A) = P (B|A)P (C|A)

• Sometimes, two variables might not be marginally independent. However, they may become
independent after we observe some third variable.

– This is very important when computing the joint probability distribution over C (Catch) is condi-
tionally independent of B (Toothache) given A (Cavity):

• The use of conditional independence often reduces the size of the representation of the joint
distribution from exponential in n to linear in n (with n number of variable)

• Conditional independence is our most basic and robust form of knowledge about uncertain envi-
ronments.

90

4.2 Context assessment with BN 4.2.3 Bayesian Networks

Summary:
Assume that the world consist of three finite variables A,B,C and the model of the world is
the joint probability distribution P (A,B,C) (i.e., an n×m× p table)

P (A) =
∑
B,C

P (A,B,C) P (A, b) =
∑
C

P (A, b, C) P (A|b) =
P (A, b)∑
A P (A, b)

The problem arises when the number of variables increases:
• A very big table is required
• A lot of computations to handle it
• Bayesian networks provide a compact representation by identifying conditional
independence between variables

4.2.3 Bayesian Networks

Consider a very typical example:

• Every variable can assume boolean values True or False

• The probability of rain and sprinkler depends on cloudy

• The probability of WetGrass depends on sprinkler and rain

• What we said in the previous summary here is evident: Bayesian networks provide a compact
representation by identifying conditional independence between variables. From the network
we can clearly see that, given a well-defined value (true/false) for rain and sprinkler, the probability
of WetGrass does not depend on cloudy:

• This information (which determines the structure of the following graph) comes from knowledge
about the domain, i.e., causal relationships.

!!! It’s forbidden to have cycles in a Bayesan Networks!

!!! On the top just the a priori probability, from which the first layer depends. The more is deep,
the more are the dependencies

Let CN be a causal network over the universe U = {A1, ..., An}, where Ai is a discrete random variable
(boolean in all the following examples). Let pa(A) denote the causal parents of A and desc(A) the
causal descendents of A. Let R denote the remaining nodes:

remaining nodes R = U\[{A} ∪ pa(A) ∪ desc(A)]

then:

The structure of the network tells that A is conditionally independent of R given pa(A):

P (U) = P (A1, ..., An) =

n∏
i=1

P [Ai|pa(Ai)]

Pay attention! In general, it is not true that A is conditionally independent of R: this holds
only if the value of A’s parents is given!

In the example of Cloudy (C), Sprinkler (S), Rain (R), WetGrass (W) it turns out that, from chain rule:

91

4.2 Context assessment with BN 4.2.3 Bayesian Networks

But using the information about causal relationships that are encoded in the structure of the
network, the computation is simplified as follows:

→ the dimensions of the tables required to represent information can be considerably smaller!

A Bayesian network (or belief network) is a probabilistic graphical model that represents a set of
random variables and their conditional dependencies via a directed acyclic graph (DAG). For example, a
Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given
symptoms, the network can be used to compute the probabilities of the presence of various diseases.

Formally, Bayesian networks are directed acyclic graphs:

• Nodes represent random variables they may be observable quantities, or hidden (not known)
variables

• Edges represent conditional dependencies; nodes which are not connected represent variables
which are conditionally independent of each other

• Each node is associated with a probability function (Conditional Probability Distribution –
CPD) that takes as input a particular set of values for the node’s parent variables and gives the
probability of the variable represented by the node

• If the parents are m Boolean variables then the probability function could be represented by a table
of 2m entries (Conditional Probability Table – CPT), one entry for each of the 2m possible
combinations of its parents being true or false

→ remember that, for each of the 2m combinations of the parents, we need to store only the
probability of the child node to true (or false), since the complementary probability of
the child node to be false (respectively, true) can be computed as a consequence.

For the previous example:

Let’s analyze this basic net:

– We see that the event “grass is wet” (W=true) has two possible causes: either the water sprinker is
on (S = true) or it is raining (R = true). The strength of this relationship is shown in the table:

P (W = true|S = true,R = false) = 0.9 ← (second row)

92

4.2 Context assessment with BN 4.2.5 Statistical inference with BN

and hence
P (W = false|S = true,R = false) = 0.1

since each row must sum up to one.
– Since the C node has no parents, its CPT specifies the prior probability that it is cloudy (in this

case, P (C = T) = 0.5).
– The conditional independence relationships allow us to represent the joint probability distribution

more compactly:
→ in general, if we had n binary nodes, the full joint would require O(2n) space to represent
→ the factored form would require O(n · 2k) space to represent (k = max fan-in of a node)
→ in addition, fewer parameters makes learning easier

4.2.4 Statistical inference with BN

Suppose we observe the fact W = T (the grass is wet). There are two possible causes: either it
is raining (R = T), or the sprinkler is on (S = T). Which is more likely? We can use Bayes’ rule to
compute the posterior probability of each explanation:

Let us compute the former quantity:

By comparing the two competing explanation, it turns out that it is more likely that W = T because
R = T (it is more likely that “the grass is wet beacause it has rained”).

4.2.5 Explaining away BN

In the above example, notice that the two causes “compete” to “explain” the observed data, hence S
and R are conditionally dependent given that their common child, W , is observed, even though they
are marginally independent.

For example, suppose the grass is wet, but that we also know that it is raining. Then the a-posteriori
probability that the sprinkler is on (S=T) goes down:

↓ P (S = T |W = T,R = T) = 0.1945

93

4.2 Context assessment with BN 4.2.6 Top-down and bottom-up reasoning in BN

This is called “explaining away”. In statistics, this is known as Berkson’s paradox, or “selection bias”.

For a dramatic example of this effect, consider a college which admits students who are either brainy or
sporty (or both). Let C denote the event that someone is admitted to college, which is made true if they
are either brainy (B) or sporty (S). Suppose in the general population, B and S are independent. We
can model our conditional independence assumptions using a graph which is a V-structure:

Now look at a population of college students (those for which C is observed to be true). It will be found
that being brainy makes you less likely to be sporty and vice versa (!), because either property
alone is sufficient to explain the evidence on C.

4.2.6 Top-down and bottom-up reasoning in BN

In the water sprinkler example, we had evidence of an effect (wet grass), and inferred the most likely
cause. This is called diagnostic, or “bottom up” , reasoning, since it goes from effects to causes. It is
a common task in expert systems.

Bayes nets can also be used for causal, or ”top down” , reasoning. For example, we can compute
the probability that the grass will be wet given that it is cloudy. Hence Bayes nets are often called
“generative” models, because they specify how causes generate effects.

Consider another example: there might be a burglar in my house (variable B) and the anti-burglar
alarm in my house may go off (variable A). I have an agreement with two of my neighbors, John and
Mary, that they call me if they hear the alarm go off when I am at work (variable J and M). Minor
earthquakes may occur and sometimes they set off the alarm (variable E):

– Variables: B,A, J,M,E

– The joint probability distribution has 25 − 1 entries

• Typically we order variables to reflect causal knowledge (i.e., causes before effects):

– A burglar (B) can set the alarm (A) off

– An earthquake (E) can set the alarm (A) off

– The alarm can cause Mary to call (M)

– The alarm can cause John to call (J)

• The remaining dependencies are expressed as a network

– Each var is a node

– For each var, the conditioning vars are its parents

– Associate to each node corresponding conditional probabilities

• Some possible queries:

94

4.2 Context assessment with BN 4.2.6 Top-down and bottom-up reasoning in BN

(Q1) I’m at work,

– neighbor John calls to say my alarm is ringing,

– neighbor Mary doesn’t call.

– No news of any earthquakes.

– Is there a burglar?

(Q2) I’m at work,

– Receive message that neighbor John called ,

– News of minor earthquakes.

– Is there a burglar?

Let’s see now some inference types:

• Diagnostic: which is the probability that an event is the cause of a detected event?

– I know the apriori probability of a burglar: P (B)

– I receive a phone call from John: P (J = T) = 1

– I can compute the a posteriori probability that a burglar entered my house, given that John has
called me: P (B|J = T)

• Predictive: which is the probability that an event is the consequence of another event?

– I know the apriori probability that John will call me: P(J);

– I see a burglar entering my house: P (B = T) = 1

– I can compute the a posteriori prob. that John calls me, given that a burglar entered: P (J |B = T)

• Intercausal: given two possible causes of an event, given that the event has been decteded and
one of the causes has been observed, which is the probability of the other cause?

– I know the apriori probability of a burglar: P (B)

– The alarm is set off and an earthquake is detected: P (A = T) = P (E = T) = 1

– I can compute the a posteriori probability that of a burglar, given the observed nodes:
P (B|E = T,A = T)

95

4.2 Context assessment with BN 4.2.7 Top-down and bottom-up reasoning in BN

• Mixed: given that a cause and the effect of an event have been observed (or not observed), which
is the probability of the event?

– I know the apriori probability of an alarm: P(A);
– The earthquake is not detected and John calls me: P (E = F) = P (J = T) = 1

– I can compute the a posteriori probability that the alarm is set off, given the observed nodes:
P (A = T |E = F, J = T)

Here an example of a realistic Bayesian Network used for Liver diagnosis:

96

4.2 Context assessment with BN 4.2.7 Independencies in BN

4.2.7 Independencies in BN

A BN encodes more independencies than the ones specified by construction. Thanks to compactness
of BNs, we reduce the number of probabilities from to O(2n) to O(n · 2k), with n number of variables,
maximum fan out of a variable. There are two problems though: (1) there are still too many variables
and (2) there are no data/experts for accurate assessment. Solution: Make stronger (approximate)
independence assumptions.

Implied Conditional Independence relations in a Bnet Consider this case

– P (Report|Alarm,F ire) = P (Report|Alarm)?

– P (Leaving|Seesmoke, F ire) = P (Leaving|Fire)?
→ Knowing these independence relationships is very important!

Independence relationships allow us not to update the whole probabilities in the Bayesian
Network even when new evidence occur.

Conditional independence in Bayes Nets In general, the conditional independence relationships
encoded by a Bayes Net are best be explained by means of the “Bayes Ball” algorithm (due to Ross
Shachter), which is as follows:

• Two (sets of) nodes A and B are conditionally independent (d-separated) given a set C if and only
if there is no way for a ball to get from A to B in the graph, where the allowable movements of the
ball are shown below:

• Hidden nodes are nodes whose values are not known, and are depicted as unshaded; observed nodes
(the ones we condition on) are shaded. The dotted arcs indicate direction of flow of the ball.

The most interesting case is the first column, when we have two arrows converging on a node X (so X
is a "leaf" with two parents):

• if X is hidden, its parents are marginally independent, and hence the ball does not pass through
(the ball being "turned around" is indicated by the curved arrows);

• if X is observed, the parents become dependent, and the ball does pass through, because of the
explaining away phenomenon.

97

4.2 Context assessment with BN 4.2.8 Independencies in BN

Now consider the second column in which we have two diverging arrows from X (so X is a "root"):

• if X is hidden, the children are dependent, because they have a hidden common cause, so the ball
passes through;

• if X is observed, its children are rendered conditionally independent, so the ball does not pass
through.

Finally, consider the the third and the fourth column in which we have an incoming and an outgoing
arrow to X.

• It is intuitive that the nodes upstream and downstream of X are dependent iff X is hidden, because
conditioning on a node breaks the graph at that point.

Now let’s see some examples:

When an Alarm is observed, Fire and Leaving become conditionally independent, according to the Bayes
Ball Algorithm (fourth column).
Therefore, the probability of a Report, given Alarm and Fire, is equal to the probability of Report, given
Alarm.

When a Fire is observed, Leaving and See smoke become conditionally independent, according to the
Bayes Ball Algorithm (second column).
Therefore, the probability of Leaving, given Fire and See smoke, is equal to the probability of Leaving,
given Fire.

98

4.2 Context assessment with BN 4.2.8 Representation of Compact Conditional Distributions

4.2.8 Representation of Compact Conditional Distributions

Once we have established the topology of a Bnet, we still need to specify the conditional probabilities:
how?

• From Data
• From Experts

To facilitate acquisition, we aim for compact representations for which data/experts can provide ac-
curate assessments.
Moreover, even if Bayesian Networks significantly reduce the dimension of the Joint Probability Distri-
bution, CPT grows exponentially with number of parent: in realistic model of internal medicine with 448
nodes and 906 links 133,931,430 values are required. This means that often there are no data/experts for
accurate assessment!.
We can try to simplify this problem, for example, considering an event like having the fever as generated
by non-interacting causes such as a cold, a flue or contracting malaria.

We make such assumption in order to gather data because it is easier to check the dependency of fever
on one cause alone. Still, in order to compute the truth table we can not use a logic OR because the
output would be the following:

In order to have more meaningful results, a possible solution is the Noisy-OR Distribution. The Noisy-OR
model allows for uncertainty in the ability of each cause to generate the effect (e.g.. one may have a
cold without a fever). Two assumptions are considered:

• All possible causes a listed;
• For each of the causes, whatever inhibits it to generate the target effect is independent from the

inhibitors of the other causes.

99

4.2 Context assessment with BN 4.2.10 Naive Bayesian Networks

The independent probability of failure qi for each cause alone is given by:

Noisy-OR - Fever example:

4.2.9 Naive Bayesian Networks

Naive Bayesian Classifier is a very simple and successful Bnet that allows to classify entities in a set of
classes C, given a set of attributes.

Email Spam example - Determine whether an email is spam (only two classes spam=T and spam=F)
After having established what are the useful attributes of an email, we can make two assumptions:

• The value of each attribute depends on the classification;

• (Naive) The attributes are independent of each other given the classification:
P("bank"| "account" , spam=T) = P("bank" | spam=T).

Naive Bayesian Network Structure

Data is easy to acquire: if you have a large collection of emails for which you know if they are spam or
not, it is easy to compute CPT.
Now suppose Email contains "free"=T, Email contains "money"=T, Email contains "viagra"=T.
How can I say that P(spam=T|all successors) > P(spam=F|all successors)?

100

4.2 Context assessment with BN 4.2.10 Learning in BN

4.2.10 Learning in BN

One needs to specify two things to describe a BN: the graph topology (structure) and the parameters
of each CPD. It is possible to learn both of these from data. However, learning structure is much harder
than learning parameters.

Also, learning when some of the nodes are hidden, or we have missing data, is much harder than when
everything is observed.This gives rise to 4 cases:

Case 1 Known structure, full observability:

We assume that the goal of learning in this case is to find the values of the parameters of each CPD which
maximizes the likelihood of the training data, which contains s cases (assumed to be independent).

• Define θ as the parameters to be learned, i.e., the conditional probabilities written in the CPT.
• D = {Y (1), ...Y (n)} are the observation made in n subsequent steps (assumed to be independent),

where Y (i) is a vector that describes the observation for each node Y (i)
j at step i.

• We want to find θ which maximizes the likelihood of observing D, i.e.:

P (D|θ) =

n∏
i=1

P (Y (i)|θ)

The parameters are obtained by maximizing the likelihood or, equivalently, the log likelihood:

L(θ) =

n∑
i=1

logP (Y (i)|θ)

If the observation vector includes all variables in the Bayesian network, then each term factors as:

logP (Y (i)|θ) = log
∏
j

P (Y
(i)
j |Y

(i)
pa(j), θ) =

∑
j

logP (Y
(i)
j |Y

(i)
pa(j), θ)

and then:
n∑
i=1

∑
j

logP (Y
(i)
j |Y

(i)
pa(j), θ)

!!! very important: the maximization of the likelihood can be computed locally, by considering each
node and its parents separately −→ consider estimating the Conditional Probability Table for the W
node. If we have a set of training data, we can just count the number of times the grass is wet when it
is raining and the sprinkler is on,

N(W = T, S = T,R = T)

the number of times the grass is wet when it is raining and the sprinkler is off,

N(W = T, S = F,R = T)

and so on...

Given these counts (which are the sufficient statistics), we can find the Maximum Likelihood Estimate
of the CPT as follows:

P (W = w|S = s,R = r) ≈ N(W = w, S = s,R = r)/N(S = s,R = r)

101

4.2 Context assessment with BN 4.2.11 Example of context assessment

where the denominator is

N(S = s,R = r) = N(W = 0, S = s,R = r) +N(W = 1, S = s,R = r)

Thus “learning” just amounts to counting (in the case of multinomial distributions), but for other kinds
of distributions, more complex procedures are necessary.

Case 2 Known structure, partial observability:

When some of the nodes are hidden, we can use the EM (Expectation Maximization) algorithm to find
a (locally) optimal Maximum Likelihood Estimate of the parameters.
The basic idea behind EM is that, if we knew the values of all the nodes, learning (the M step) would be
easy, as we saw above.
In the E step, we compute the expected values of all the nodes using an inference algorithm.
In the M step we treat these expected values as though they were observed (distributions).

E step:
For hidden nodes we replace the observed counts of the events with the number of times we
expect to see each event.
For example, in the case of the W node:

P (W = w|S = s,R = r) ≈ EN(W = w, S = s,R = r)/EN(S = s,R = r)

where EN(.) returns the expected counts.
Given the expected counts, we maximize the parameters, and then recompute the expected
counts, etc. This iterative procedure is guaranteed to converge to a local maximum of the
likelihood surface.
When nodes are hidden, inference becomes a subroutine which is called by the learning proce-
dure; hence fast inference algorithms are crucial.

4.2.11 Example of context assessment

Suppose that there are two events which could cause the PIR to detect a person: either the user is having
dinner or he is reading the newspaper. Also, suppose that having dinner has a direct effect on reading
the newspaper: when the user is having dinner, usually he does not read news. Then the situation can
be modeled with a Bayesian network:

All three variables have two possible values T (for true) and F (for false). We assume to know the
structure, which could be learned, and to learn only parameters. Given the Training Set:

R S G R S G
T T T F T T
T F T T T T
F F F F T T
F T F T F T

We can make the following computations:

102

4.2 Context assessment with BN 4.2.11 Example of context assessment

103

4.2 Context assessment with BN 4.2.13 Dynamic Bayesian Network

4.2.12 Dynamic Bayesian Network

So far we have used Bayesian networks to perform inference in static environments, for instance, the
system keeps collecting evidence to diagnose the cause of a fault in a system (e.g., a car). The environment
(values of the evidence, the true cause) does not change as I gather new evidence

What does change? The system?s beliefs over possible causes. What are we missing? Time.

When I go to the bathroom, at time i I am detected by PIR_hall, at time i + 1 I am detected by
PIR_corridor... When I go to the kitchen, at time i I am detected by PIR_hall, at time i + 1 I am
detected by PIR_door... Then, observing PIR_hall is not sufficient to explain the causes:

It is possible to build a Dynamic Bayesian Network in which every slice correspond to a time interval,
the links between different slices determines how a variable at time i influences variables at time i + n
(the model is very complex):

Information at a higher level of abstraction can be incorporated (arrows not shown in figure). This allows
symptomatic reasoning like “which is the most probable cause of my going to the kitchen?”

104

4.2 Context assessment with BN 4.2.13 Markov Model

4.2.13 Markov Model

First Order Markov Model Given a variable X(i) (corresponding to a set of observable nodes at
time i), the network is defined as a first order Markov Model if the value of each node at time (i) is
influenced only by its value at time (i− 1).

This can also be said as follows:

P (X(T), X(T−1), X(T−2), ...) ≡ P (X(T)|X(T−1))P (X(T−1)|X(T−2))...P (X(1)|X(0))

We make a stationary process assumption: the mechanism that regulates how state variables change
overtime is stationary, that is it can be described by a single transition model.

A very common way to see Markov Model is to assume that observations are dependent on a discrete
hidden variable called the state which can assume N values, and that the sequence of states is a Markov
Process (I.e., it has the Markov property). In this this case we will speak about a Hidden Markov Models.

The transition probabilities from states s can be expressed in transition tables:

s1 s2 s3

s1 .5 .5 0
s2 .3 .3 .4
s3 .2 0 .8

Markov processes are interesting in that they allow a very compact representation P (x(i)) = π(i) =

[π
(i)
1 , ...π

(i)
N]T is the probability distribution at time i, which describes the probability of being in each of

the N states

P (x(0)) = π(0) is the initial probability distribution over all possible states.

The conditional probabilities P (x
(i+1)
k |x(i)

j) are stored in a NxN transition matrix P, where the element
pjk = P (x

(i+1)
k |x(i)

j) specifies the probability of going from state i to state j in two subsequent time steps.

Starting from this representation it is possible to infer interesting properties:

105

4.2 Context assessment with BN 4.2.14 Markov Processes

• ff the matrix P is irreducible (I.e., the corresponding graph is strongly connected), P has one
eigenvector with eigenvalue 1 (Perron-Frobenius theorem) the distribution π(i) tends to a steady-
state distribution π as i tends to infinity;

• strongly connected: it is possible to find a path from every node to every other node;
• the steady state distribution can be computed as π = PTπ;
• it gives information about the probability of each state after a transient behaviour.

Second order Markov Model Given a variable X(i) (corresponding to a set of observable nodes at
time i), the network is defined as a second order Markov Model if the value of each node at time (i)
is influenced only by its values at time (i− 1) and (i− 2).

What can Markov Models be used for? Consider the sentence "Book me a room near UBC".
We could be interested in:

• Assigning a probability to the sentence (e.g. Part-of-speech tagging, word-sense disambiguation,
probabilistic)

• Parsing a word or predicting the next word (e.g. Speech recognition, hand-writing recognition,
augmentative communication for the disabled)

But how can we compute the Joint Probability of a sequence of n words?

P (w1, .., wn) is impossible to estimate!

Assuming 105 words and considering that an average sentence contains n = 10 words, this yields 1050

probabilities!
For example, Google language repository (22 Sept. 2006) contained "only": 95,119,665,584 sentences
(1011)
Most sentences will not appear or appear only once: we can assume that a sentence is generated by a
first order Markov Chain:

Hidden Markov Model A hidden Markov model (HMM) is a statistical Markov model in which the
system being modeled is assumed to be a Markov process with unobserved state.
An HMM can be considered as the simplest dynamic Bayesian network. In a regular Markov model,
the state is directly visible to the observer, and therefore the state transition probabilities are the only
parameters.
In a hidden Markov model, the state is not directly visible, but output, dependent on the state, is
visible. Each state has a probability distribution over the possible output tokens. Therefore the sequence
of tokens generated by an HMM gives some information about the sequence of states.
Hidden Markov models are especially known for their application in temporal pattern recognition such
as speech, handwriting, gesture recognition, part-of-speech tagging, musical score following, partial dis-
charges and bioinformatics.

4.2.14 Markov Processes

Imagine to have a Markov process, and that every observation is deterministically associated to a state.
The model has three states, Bull, Bear and Even, and three index observations up, down, unchanged.
Given a sequence of observations we can easily verify which state sequence produced those observations.

106

4.2 Context assessment with BN 4.2.14 Markov Processes

E.g.: up-down-down corresponds to Bull-Bear-Bear, and the probability of the sequence is 0.2 ∗ 0.3 ∗ 0.3.

The key difference with a Markov Model is that now if we have the observation sequence up-down-
down then we cannot say exactly what state sequence produced these observations and thus the state
sequence is ’hidden’.
We can however calculate:

1. which state sequence was most likely to have produced the observations;

2. the probability that the model produced the sequence.

Point 1 is not different from what we already saw, point 2 is something different... we imagine to have
different models, and to find the ones that fits the best.

Another example can be a hidden Markov Model of a quick dinner situation.

107

4.2 Context assessment with BN 4.2.14 Markov Processes

But what is the main problem of such a model? It can not consider states before the previous one.
For example, if you turn on the microwave and after that you open the fridge, you could reasonably
expect that a turn off the microwave will probably happen in the future, but a first order Markov model
(like this one) can’t take that into account and that "information" will be lost.

Formal definition of HMM The formal definition of a HMM is as follows:

λ = (A,B, π)

S is our state alphabet set, and V is theobservation alphabet set:

S = (s1, s2, ..., sN)
V = (v1, v2, ..., vM)

We define Q to be a fixed state sequence of length T, and corresponding observations O:

Q = (q1, q2, ..., qT)
O = (o1, o2, ..., oT)

A is a transition array, storing the probability of state j following state i . Note the state transition
probabilities are independent of time:

A = [aij] , aij = P (qt = sjj|qt−1 = si)

B is the observation array, storing the probability of observation k being produced from the state j,
independent of t:

B = [bi(k)] , bi(k) = P (xt = vk|qt = si)

π is the initial probability array:

π = [πi] , πi = P (q1 = si)

108

4.2 Context assessment with BN 4.2.14 Markov Processes

Assumptions Two assumptions are made by the model:

• Markov assumption, states that the current state is dependent only on the previous state, this
represents the memory of the model:

P (qt|qt−1
1) = P (qt|qt−1)

• The independence assumption states that the output observation at time t is dependent only on
the current state, it is independent of previous observations and states:

P (ot|ot−1
1 , qt1) = P (ot|qt)

Evaluation of a HMM Given a HMM, and a sequence of observations, we would like to be able to
compute the probability of the observation sequence given a model. This problem could be viewed as
one of evaluating how well a model predicts a given observation sequence, and thus allow us to choose
the most appropriate model from a set.

The probability of the observations O for a specific state sequence Q is:

P (O|Q,λ) =
∏T
t=1 P (ot|qt, λ) = bq1(o1) ∗ bq2(o2) ∗ ... ∗ bqT (oT)

and the probability of the state sequence is:

P (Q|λ) = πq1 ∗ aq1q2 ∗ aq2q3 ∗ ... ∗ aqT−1qT

so we can calculate the probability of the observations given the model as:

P (O|λ) =
∑
Q P (O|Q,λ)P (Q|λ) =

∑
(q1...qT) πq1 ∗ bq1(o1) ∗ aq1q2 ∗ bq2(o2) ∗ ... ∗ aqT−1qT ∗bqT (oT)

This result allows the evaluation of the probability of O, but to evaluate it directly would be exponential
in T.
A better approach is to recognise that many redundant calculations would be made by directly evaluating
the equation, and therefore caching calculations can lead to reduced complexity.

We implement the cache as a trellis of states at each time step, calculating the cached valued (called
P (O|λ)) for each state as a sum over all states at the previous time step.
We define the forward probability variable as αt(i) = P (o1o2...ot, qt = si|λ).

The algorithm for this process is called the forward algorithm and is as follows:

• Initialisation:
α1(i) = πibi(o1) , 1 ≤ i ≤ N

• Induction

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(ot+1) , 1 ≤ t ≤ T − 1 , 1 ≤ j ≤ N

109

4.2 Context assessment with BN 4.2.14 Markov Processes

• Termination:

P (O|λ) =

N∑
i=1

αT (i)

It is apparent that by caching values the forward algorithm reduces the complexity of calculations in-
volved to N2T rather than 2TNT .
In particular, with hidden variables H = X(1)...X(n) , the log likelihood cannot be composed in local
terms to be maximized separately.

L(θ) =
∑N
i=1 logP (Y (i)|θ) =

∑N
i=1 log

∑
X(i) P (Y (i), X(i)|θ)

By considering a single observation, it holds:

The Expectation Maximization algorithm alternates between maximizing F with respect to Q and θ,
respectively, holding the other fixed.
Starting from some initial parameters θ0, we iteratively compute:

E step Qk+1 ← arg max
Q

F (Q, θ)

M step θk+1 ← arg max
θ

F (Qk+1, θ)

It is easy to show that the maximum in the E step results when

Qk+1(X) = P (X|Y, θk)

In fact:

110

4.3 Context awareness 4.3.2

The M step becomes:

θk+1 ← arg max
θ

∑
X P (X|Y, θk)logP (X,Y |θ)

Since logP (X,Y |θ) contains both hidden and observed variables, it can be factored as before as the sum
of log probabilities of each node given its parents.
By referring as Z as a generic (hidden or observable) node:

θk+1 ← arg max
θ

∑
X P (X|Y, θk)

∑
Z logP (Z|pa(Z), θ)

For observable nodes compute:

∑
X P (X|Y, θk)

∑
Y logP (Y |pa(Y), θ) =

∑
Y logP (Y |pa(Y), θ)

4.3 Context awareness

4.3.1 State of the art

Temporal patterns are used in order to develop a more relevant Context Awareness. For example, if
the stove sensors detect somebody cooking at time t and the table PIR sensor detects somebody sitting
at the table at time t+∆t, then somebody is having a meal. While temporal patterns are supported in
Allen’s algebra (B. Gottfried, H. Guesgen and S. Hubner, 2006 ; M. Cirillo, F. Lanzellotto, F. Pecora
and A. Saffiotti, 2009) and in temporal data mining and machine learning (P. Rashidi and D.
Cook, 2009), they are not supported in conventional Ontologies.
Temporal constructs, like Temporal RDF, and Temporal Description Logics were developed in order to
add temporal functionalities into ontologies, but they were not compatible with existing standard
languages, tools for editing and reasoning.
Another attempt was developing a rule-based reasoning, but it increased the complexity in design and
reasoning.
In order to recognize temporal patterns of events, a system requires an ontology implemented in OWL
DL with basic reasoning mechanisms, without any additional rule-based mechanisms.
Such system has been implemented in EL++ (a lightweight Desciption Logic) which is implemented in
the OWL 2 EL profile and allows for reasoning in polynomial time (F. Baader, S. Brand and C. Lutz,
2005)

4.3.2 Description Logic Basic Principles

The basic principles of Description Logic are described in the following picture:

111

4.3 Context awareness 4.3.3 System Architecture

The constructors available to build complex descriptions determine the expressiveness of a specific
sub-language.
AL : negation of atomic concepts, concept intersection, universal value restrictions and limited existential
quantification.
SHOIN (D) : negation of non atomic concepts, union of concepts, full existential quantification, role
hierarchies, usage of nominals in concept definitions, inverse on roles, role cardinality restrictions, and
usage of basic data types.
EL : Since what we are interested in is the instance checking for context assessment, it has been proven
that if the ontology is written in EL description logic the checking time will be polynomial! That’s very
good since we have an upper bound.

4.3.3 System Architecture

The system architecture comprises a TBox, an ABox and Reasoning.

During the offline phase, the designer defines system concepts and roles by designing the TBox:

112

4.3 Context awareness 4.3.3 System Architecture

During the online phase, sensors asserts individuals and role assertions by populating the ABox:

During the reasoning in the online phase, instance checking (e.g. Merlin is an instance of Mage and he
has a domicile → he is also an instance of Resident) and assertion from TBox to ABox are performed.

The reasoning leads to the activities recognition and to actions in the environment while the designer
can monitor the behavior of the system.

113

4.3 Context awareness 4.3.4 Offline phase: designing the TBox

4.3.4 Offline phase: designing the TBox

When we define the TBox during the offline phase, we need to design:

1. system concepts and roles;

2. user-defined concepts roles.

Defining system concepts means formalizing generic ideas like :

• sensor as any physical or virtual source of information

• sensor state as the most recent value returned by a sensor, which can result from a non-uniform
sampling

• the definition of event

• the definition of time intervals,

• etc..

For example, in a smart home system, different types of sensors (presence sensors, clocks, item sensors,
etc..) can be included in the system concept of Sensor.
User-defined concepts are derived from system concepts and are related to the application use case:

For example, an Oven and its states OvenOn and OvenOff are user-defined concept included in the
system concept of Sensor.

System roles formalize generic properties (e.g. ∃StartsAt.Integer) and relationships (e.g. ∃before+) be-
tween concepts. User-defined roles are related to user-defined concepts.

114

4.3 Context awareness 4.3.4 Offline phase: designing the TBox

For our system, the context is a configuration of sensor states holding in a time interval. In the previous
figure, we can notice that Prepare Lunch is equivalent to the configuration of sensor states where OvenOn
and LaunchTime are observed. By introducing temporal constraints concepts in our system such as:

We can define temporal relationships between concepts, being able to define a situation as a temporal
sequence of contexts:

We can also define system concepts using concrete domains:

Time instants (e.g. t-5min) must be computed on the basis of the current time t, meaning that we need
to updated such definitions every t.

Moreover, we can generalize concepts:

115

4.3 Context awareness 4.3.5 Online phase: populating the ABox

4.3.5 Online phase: populating the ABox

The first step to populate the ABox is to assert individuals and roles. The second step is to record the
changes in sensor states configuration (considering also their time duration) as events.
Such changes will be represented with a rising edge on the corresponding concept. When one or more
rising edges happen or when some time relationship is satisfied, they will trigger a new event. The event
will last as long as there are no falling edges in any of the concepts defining the event: one falling edge
is enough to trigger the end of the event.
For example, think an event Eab, triggered at instant ti by rising edges in concepts A and B. Let’s analyze
some cases:

• Suppose that at time ti+4 A isn’t observed anymore and it has a falling edge: the event lasted 4
instants.

• Suppose that at time ti+4 A,B,C are observed, a new event Eabc characterized by concepts A, B and
C is added. Again, suppose that at instant ti+7 C has a falling edge: Eabc will end with a length
of 3 instants. Suppose, instead that at instant ti+7 A has a falling edge: both events Eab and Eabc,
will end, the former with length of 7 instants, while the latter with a length of 3 instants.

• Suppose that at instant ti+10 A and B are still observed: 10 instants are passed with A observed,
this trigger a new event ElongA which started at ti.

After each event, an instance checking is run to see if it’s possible to assert additional context information
based on the concepts defined by the user.

Let’s see a practical example.
Initial assertions:

At instant t1 the event E1(DinnerTime) is recorded, but instance checking doesn’t produce any result
because there isn’t a corresponding concept:

116

4.3 Context awareness 4.3.5 Online phase: populating the ABox

At instant t2 the event E1 is followed by the event E2(DinnerTime, OvenOn): this knowledge is added to
the ABox as before(E2,E1). This time, instance checking asserts that, given the sensor and the temporal
data, PrepareDinner has occurred and add it to the ABox:

After less than one minute, OvenOn deactivates, causing event E2 ending while acknowledging its tem-
poral duration:

117

4.3 Context awareness 4.3.5 Online phase: populating the ABox

At instant t3, cellPhoneOn is observed, triggering event E3(DinnerTime, cellPhoneOn):

At instant t4, AtTable is observed, triggering event E4(DinnerTime, cellPhoneOn,AtTable):

118

4.3 Context awareness 4.3.5 Online phase: populating the ABox

After a while, cellPhoneOn is not observed, so there is a falling edge which "ends" event E3 and E4
(adding knowledge about their temporal length to the ABox):

A new event E5(DinnerTime,AtTable) is added to ABox in order to keep track of those two observations
during time. It starts at t4 because is when AtTable starts.

119

4.3 Context awareness 4.3.5 Online phase: populating the ABox

Now, instance checking detects that the configuration of sensor states (DinnerTime,AtTable) and the
temporal relationship (E5 happened after E3 which happened after E2 which was recognized as Pre-
pareDinner) related to HaveDinner is satisfied and so it adds this knowledge to the ABox:

The maximum number of new assertions with N individual sensors at time t is N2 in the worst case. The
number of assertions in the ABox after T time interval is O(TN2):

120

4.3 Context awareness 4.3.5 Online phase: populating the ABox

121

4.3 Context awareness 4.3.5 Online phase: populating the ABox

122

Chapter 5

BDI Agents

5.1 Introduction

Classical planning systems have goals, and plan sequence of actions to reach goals. BDI stands for Belief,
Desire and Intentions, where Belief consists in the knowledge about the state of the world, Desire
constitutes the goals to be reached and Intentions represents the commitment to achieve goals.

5.2 Procedural Reasoning System

A Procedural Reasoning System has the ability to:

• Reason upon its own beliefs, desires, and intentions.
• Deal with multiple goals and intentions.
• When in a multi-agent context, it can reason on other agents beliefs, desires and intentions.

All examples shown up to know require only simple reactive behaviours, such as turning on the heating
system when the person gets home, switching off the lights in other rooms if the person is cooking or
turning on the boiler to heat the water for a shower if the person went out for jogging. However, when
you think about a more complex situation such as cooking itself, a sequence of activity to be planned is
involved.

• Show a recipe book and allow the user to choose a recipe;
• Check which ingredients are present/missing/passed by in the fridge (through RFID tags on the

food);
• Suggest the user where to go buying missing ingredients, depending on which shops are known to

be open/closed (possibly showing driving direction on a portable device embedded with GPS);
• Suggest the user how to correctly refill the fridge;
• Assist the user while performing the 4 basic tasks of cooking: preparation, concocting, cooking,

and arranging.

During the execution, if the situation changes, the system must be able to abandon the plan and possibly
formulate a new one, therefore simple planning is not sufficient. (i.e: at some time, the person gets bored
and decide to make a phone call to the Pizza delivery service; the shop closes before the user has reached
it; two users want to use the kitchen at the same time for different purposes; somebody refills the fridge
(with required ingredients) while the person is outside for buying them at the closest shop and so on...)
Classical planning system (like STRIPS) were not designed to deal with such situations, on the other
side, reactive systems (behaviour based, subsumption) do not allow to consider complex plans.

A typical approach consists in employing a plan constructor and a plan executor. The former
formulates an entire course of action before commencing execution of the plan while the latter calls low
level routines to execute the primitive actions. The plan is composed of these action and it is monitored
to verify that their execution produce the desired effect. If there are some problem the plan constructor
is invoked again.

123

5.3 AgentSpeak 5.3.0

Some problems with this approach rise when too many decision are taken at the beginning. Since
planning is computationally expensive, and often in contrast with real-time requirements, it is better to
defer decisions as much as possible, when the system will have more information to take the best decision.
In any case, replanning is required if something changes.

In traditional system the focus is on plan generation, where the plan can be simply stored in the system
as procedures to achieve a given result, learnt, shown by demonstration or even taught to the system.
The most important part is not planning, but "dealing" with plans (which can be multiple, must be
correctly integrated, abandoned, re-considered, etc.).

A Procedural Reasoning System is made up of:

• Beliefs: database containing current beliefs or facts about the world.
• Goals: current goals or desires to be realized.
• Knowledge Areas: procedures describing how certain sequences of actions and tests may be per-

formed to achieve given goals or to reach particular situations.
• Intentions: process stack (containing all currently active KAs) which can be viewed as the system’s

current intentions for achieving its goals or reacting to some observes situation.
• Interpreter (inference mechanism) to manipulate these components.

Skipped slides "BDI Agents" from 15 to 31

5.3 AgentSpeak

AgentSpeak is a formal language implemented in Jason. The alphabet consist of

• Variables;
• Constants;
• Function symbols;
• Predicate symbols;
• Action symbols;
• Connectives;
• Quantifiers;
• Punctuation symbols;

Apart from first order connectives (and, or, not), we also use

• ! (for achievement)
• ? (for test)
• ; (for sequencing)
• ← (for implication).

Standard first-order definitions of terms, first-order formulas, closed formulas, and free and bound occur-
rences of variables are used.

124

5.3 AgentSpeak 5.3.0

Definition 1: beliefs

• If b is a predicate symbol and t1, ..., tn are terms, then b(t1, ..., tn) or b(t) is a belief atom.
• If b(t) and c(s) are belief atoms, b(t) ∧ c(s) and ¬b(t) are beliefs.
• A belief atom or its negation will be referred to as a belief literal.
• A ground belief atom will be called a base belief.

In our case,
cooking_tem(x, y) in(x, y) ⇒ belief atoms

to_be_cooked(bread, 180deg) in(oven, bread) ⇒ base belief

A goal is a state of the system which the agent wants to bring about. We consider two types of goals:
an achievement goal and a test goal:

• An achievement goal, written as
!g(t)

states that the agent wants to achieve a state where g(t) is a true belief.
• A test goal, written as

?g(t)

states that the agent wants to test if the formula g(t) is a true belief or not.

In our example, putting the bread in the oven can be stated as an achievement goal, i.e., !in(oven_bread),
whereas seeing if the bread is in the oven can be stated as a test goal, i.e., ?in(oven, bread).

Definition 2: goals

• If g is a predicate symbol, and t1, .., tn are terms then !g(t1, .., tn) or !g(t) and ?g(t1, .., tn) or ?g(t)
are goals.

When an agent acquires a new goal or notices a change in its environment, it may trigger additions
or deletions to its goals or beliefs. We refer to these events as triggering events. We consider the
addition/deletion of beliefs/goals as the four triggering events:

• Addition is denoted by the operator +

• Deletion is denoted by the operator −
→ in our example, noticing that the user wants to cook the bread is a triggering event

Definition 3: triggering events

• If b(t) is a belief atom, !g(t) and ?g(t) are goals, then +b(t),−b(t),+!g(t),−!g(t),+?g(t),−?g(t) are
triggering events.

The purpose of an agent is to observe the environment, and based on its observation and its goals,
execute certain actions. These actions may change the state of the environment. For example, if put
is an action symbol, putting an object X in Y , written as put(X,Y), is an action. This action results in
an environmental state where the object X is inside Y.

Definition 4: actions

• If a is an action symbol, and t1, .., tn are terms then a(t1, .., tn) is an action.

An agent has plans which specify the means by which an agent should satisfy an end. A plan consists
of a head and a body:

• The head of a plan consists of a triggering event and a context, separated by a :, the triggering
event specifies why the plan was triggered, i.e., the addition or deletion of a belief or goal.

triggering_event : context

The context of a plan specifies those beliefs that should hold in the agent’s set of base beliefs, when
the plan is triggered.

125

5.3 AgentSpeak 5.3.0

• The body of a plan is a sequence of goals or actions and it specifies the goals that the agent
should achieve or test, and the actions that the agent should execute.

For example, if we want a plan that is executed when the user wants to cook bread (x):

The plan is triggered, for example when the goal !cook(bread) is added in the database. The relevant
unifier is {x/bread}, which is applied everywhere in the plan. The plan is applicable if it is possible to
find also an unifier for y, z, and w (specified in the context) within the belief database.

If the cooking time, temperature, and place are not among the belief, the plan is not
applicable.

An alternative definition could be:

In this case the plan is always applicable. When it execute the 3 test goals at the beginning of the body
(?cooking_time(x, z), ?cooking_place(x, z), ?cooking_temp(x, z)):

• It checks if they are a logical consequence of the base beliefs, otherwise, it adds the triggering event
of the type +?g to the set of events.

• If there are no applicable plans for such event, then the plan fails (fails "normally", i.e., for the "no
applicable plans" reason). We will see later what happens when a plan fails.

• Analogously, if there is no applicable plan for a triggering event of the type +!g or an action within
the plan fails, we say that the plan fails. Failures are backpropagated.

As an example, this is the plan if the temperature is not in the database:

126

5.3 AgentSpeak 5.3.0

Notice also that we are assuming that current_temperature is a belief that is updated by somebody
else.

Definition 5

• If e is a triggering event, b1, ..., bn are belief literals, and h1, ..., hn are goals or actions then e :
b1 ∧ ... ∧ bn ← h1, ..., hn; is a plan.

• The expression to the left of the arrow is referred to as the head of the plan and the expression to
the right of the arrow is referred to as the body of the plan.

• The expression to the right of the colon in the head of a plan is referred to as the context. For
convenience, we shall rewrite an empty body with the expression true.

Some of the major differences between a logic program and an agent program are as follows:

• In a pure logic program there is no difference between a goal in the body of a rule and the head of
a rule.

• In an agent program the head consists of a triggering event, rather than a goal. This allows for
a more expressive invocation of plans by allowing both data-directed (using addition/deletion of
beliefs) and goal-directed (using addition/deletion of goals) invocations.

• Rules in a pure logic program are not context-sensitive as plans.

• Rules execute successfully returning a binding for unbound variables; however, execution of plans
generates a sequence of ground actions that affect the environment.

• While a goal is being queried the execution of that query cannot be interrupted in a logic program.
However, the plans in an agent program can be interrupted.

Informally, an agent consists of:

• A set of base beliefs, B;

• A set of plans, P;

• A set of events, E;

• A set of actions, A;

• A set of intentions, I;

• Three selection functions, SE, SO, SI.

When the agent notices a change in the environment or an external user has asked the system to adopt
or discard a goal or the system itself has added/deleted a belief or a goal, an appropriate triggering
event is generated.

Moreover, events, both internal or external, are asynchronously added to the set of events E, at the
same time, the selection function SE selects an event to process from the set of events E. This event is
removed from E and is used to unify with the triggering events of the plans in the set P.

127

5.3 AgentSpeak 5.3.0

The plans whose triggering events so unified are called relevant plans and the unifier is called the relevant
unifier.

Then, the relevant unifier is applied to the context condition and a correct answer substitution is
obtained for the context, such that the context is a logical consequence of the set of base beliefs, B.

Such plans are called applicable plans or options and the composition of the relevant unifier with
the correct answer substitution is called the applicable unifier. For each event there may be many
applicable plans or options.

The selection function SO chooses one of these plans. Applying the applicable unifier to the chosen
option yields the intended means of responding to the triggering event.

Each intention is a stack of partially instantiated plans or intention frames. In the case of an external
triggering event (i.e., generated by a new belief in the data base or added by the user) the intended means
is used to create a new intention, which is added to the set of intentions I.

In the case of an internal event (i.e., generated by another plan) the intended means is pushed on top
of an existing intention that triggered the internal event.

Then, the selection function SI selects an intention to execute. When the agent executes an intention,
it executes the first goal or action of the body of the top of the intention. Executing an achievement
goal is equivalent to generating an internal event to add the goal to the current intention. Executing
a test goal is equivalent to finding a substitution for the goal which makes it a logical consequence
of the base beliefs.

If such a substitution is found the test goal is removed from the body of the top of the intention and
the substitution is applied to the rest of the body of the top of the intention. Executing an action results
in the action being added to the set of actions, A, and it being removed from the body of the top of the
intention. The agent now goes to the set of events, E, and the whole cycle continues until there are no
events in E or there is no runnable intention.

What exactly are the cases where negative events of the forms "-!p" and "-?p" are gener-
ated? If an action fails or there is no applicable plan for a subgoal in the plan being executed to handle
an internal event with a goal addition "+!p" or "+?p", then the whole failed plan is removed from the top
of the intention and an internal event for "-!p" or "-?p" associated with that same intention is generated.
This allows the programmer to specify backup plans!

It is claimed that open-world assumption is available. What does this mean?

• There is a "strong negation" operator "∼".
• When assuming open world, the user models the environment with a set of propositions known to

be explicitly true and a set of propositions known to be explicitly false of the environment at a
certain moment in time (the latter are literals preceeded by the operator).

• Of course, there is still default negation (as usual in logic programming languages), so you can say,
in the context of a plan, "not p(t) & not ∼p(t)" to check if the agent is uncertain about "p(t)".

• Note that it’s completely up to the users to prevent inconsistency (or to use it, if they so wish).
You could add internal beliefs (or have beliefs from perception of the environment) that p(t) is true
and that ∼ p(t) is also true

• Finally, note that strong negation can also appear in the triggering events, plan body, and anywhere
a literal can appear.

What’s the difference between "!" and "!!" ? The difference between "!" and "!!" is that the latter
causes the goal to be pursued as a separate intention. Within the body of a plan in one intention, if you
have "!g1; !g2" the agent will attempt to achieve g2 only after achieving (or finishing executing a plan
for) g1. If you say "!!g1; !g2" the agent will then have another separate intention to achieve g1 and can
immediately start attempting to achieve g2. What will be done first (executing a bit of the intention with
g1 or the old intention with g2) will depend on the choices that the intention selection function makes.

128

5.4 Exercise 5.4.0

5.4 Exercise

You are requested to design a system to control resources within the port of Genova. In particolar,
resources can be

• Human workers (truck drivers, forklift drivers, crane drivers, dockers, security staff, administrative
staff)

• Means of transport (trucks, forklifts, cranes)

• Sensors distributed in the environment (cameras, PIR sensors, laser scanners)

• Computers (server, PDA devices and desktop computers)

Security people are equipped with a PDA which is able to suggest a course of action to take depending
on the specific situation. In particular, this is used to encode best practices in the security domain, e.g.,
when security personnel find a person in an area where it is not allowed to be in. Consider the situation
above, i.e., when somebody is detected by sensors in a restricted area. The security staff is supposed to
follow the procedure A:

• Reach the area of interest

• Check the identity of the person

• Transmit the identity of the person to the server

Assume that the following actions are available, described as operator in first order predicate logics

• "goto_area(X)" (the system provides guidance to reach the area X)

• "id_person(X)" (the user is required to insert manually the identity of the person X, which is
"unknown" if the person is not recognized)

• "transmit_id (X)" (the system transmit automatically the identity of X to the remote server)

Moreover, the system is able to infer the current position of the user and to add a corresponding belief
in the knowledge base with "user_position(X)"

Describe procedure A as a plan in Agent Speak, by introducing all the predicate symbols
that you need.

129

5.4 Exercise 5.4.0

130

Chapter 6

universAAL

6.1 Introduction

The universAAL platform derives from a (like named) European Union funded R&D project. The
American computer scientist Mark Weiser predicted that computers would soon become a lot smaller,
cheaper and much, much more numerous. Thanks to these developments, computer technology could
move away from the desks and into the surroundings of their users, thus becoming what Weiser had
called a "calm technology" a tool that supports its users without requiring their ongoing attention. Weiser
called it "Ubiquitous Computing", others used other terms such as "Pervasive Computing", "Ambient
Intelligence", or "Ambient Assisted Living", but more or less, all of these refer to the same concept:
distributed networks of technical devices that, for the most part invisibly, surround us and assist us in
many aspects of everyday tasks without us even noticing. As a simple example, imagine that your TV
automatically turns down the volume if you pick up the ringing phone (as famously described by Tim
Berners Lee in his article "The Semantic Web"). A system to which both the TV and the phone are
connected could "understand" that when talking on the phone, you prefer a low ambient noise, and thus
turn out the sound for you.

6.2 The software

universAAL is a software that helps to build so called "assistive systems" by connecting various, het-
erogeneous technical devices to a single, unified network. universAAL also delivers the means to control
this distributed system (and the devices that it is based on). In this regard, universAAL is not unlike an
Operating System for AAL. Operating systems help to connect hardware components (such as, among
others, a processor, a graphic card, a screen and a keyboard) to a single system and give the user the
means to control this system. One of the main differences is, however, that most of the components that
work together within a universAAL based system weren’t originally meant to do so (such as your TV
and your fridge). In the universAAL world, a single device that is connected to an assistive system is
referred to as being a "node". There are two ways of how to integrate a device into an universAAL based
assistive system, assuming that the device in question is networked.

• The first way is to install a specific piece of the universAAL platform on the device, the so called
"Middleware".

• The second way does not require a given device to run the universAAL Middleware. The device
in question is rather connected to a node that runs this Middleware, and this node is used as an
intermediary by the system in order to control the additional device.

6.3 Middleware

The middleware shall be capable of hiding the distribution and heterogeneity of the diverse devices that
make up the system at its core, and manages communication between nodes.

131

6.4 The three buses 6.4.2

From an application programmer’s perspective, this means that you do not need to worry about the fact
that some of the applications that your appliance talks to may actually be running on other devices than
the one your application is. You will simply forward all of your application’s messages and requests to
the middleware component, which will take it from there, making sure that each message reaches its
recipient, thus greatly simplifying your life as a programmer.

The middleware deals with situations in which it either loses the connection to one or more nodes, or
situations in which additional nodes try to (re –)join the system. The latter is handled by the discovery
and peering mechanisms of the middleware that automatically recognize and integrate all qualified nodes
within reach. The real challenge, however, lies in handling the loss of nodes, as this kind of unpredictable
behavior makes it difficult to organize a reliable system.

For example, users may turn certain devices off (by accident or intentionally) or carry them away (as
will happen with mobile phones on a regular basis). Some devices may run out of battery while others
might simply fail. This results in a considerable degree of uncertainty, whether about a specific node,
meant are both the device and the software running on it, will really be available when talked to by the
system. The solution to this problem is called "goal based interoperability". It is based on the principle
idea to formulate requests in a semantic and not in a syntactical way, thus stating what is supposed to
be done: the "goals" that are to be achieved rather than how this should be done (which would include
the specification of an addressee).

The universAAL platform achieves this through the use of ontological descriptions. The task of finding
the appropriate recipient for a message is then left to a mediator that needs to know of all possible
recipients that are currently available and must be able to decide, which one of them (if any) is the right
one for this specific request.

On the downside, however, this means that applications also require well thought out strategies for
fault tolerance as there can be no guarantees that the dynamic resolution of dependencies through the
mediators will actually be successful. The universAAL Middleware has three mediators , and each of
them is responsible for the delivery of a certain message category: the buses.

6.4 The three buses

The three buses form the heart of the universAAL platform. All communication between universAAL
based applications should happen only in a round about way via one of them, even if physically, these
applications are located on the same node. Each of the buses handles a specific type of message/request,
and the way that a bus operates is based on the characteristics of this category of information.

6.4.1 Context Bus

The so called Context Bus, is an "event based" communication channel: an application forwards informa-
tion to this bus without taking interest in the existence of actual recipients. A typical "context provider",
an application that publishes context information onto the Context Bus, would be an application talking
to a sensor (such as a temperature sensor).

At regular intervals, this application forwards the values it receives from the sensor to the Context Bus,
maybe after having preprocessed them in a certain way.

Such an application does not need to know who is receiving its messages, that is, who the "context
subscribers" are that have registered themselves to the Context Bus as recipients for this specific kind of
sensor related messages (if there are any at all).

6.4.2 Service Bus

The so called Service Bus, on the other hand, is "call based". In this context, the term "service" shall
mean the provision of a functionality, or in other words, that someone is doing something for somebody
else.

• An application that offers a service (= can do something) announces this by registering a corre-
sponding service profile, that is a description of what it is capable of doing, with the Service Bus.
This kind of application is called a "service callee" (because it gets called by another application).

132

6.5 Functionalities 6.5.1 UI Bus

• An exemplary service callee would be an application that can control a lamp, maybe one of those in
the living room, and it would register the appropriate service profile with the Service Bus (stating
something like "I can turn off one of the lights in the living room").

• The counterpart to the service callees are applications that require a service, the "service caller".
They send a service request to the Service Bus, asking for a specific service (as in "I need someone
to turn off the lights in the living room, please").

• It is then up to the Service Bus to find one or more matching service profiles to the service request
and, if a match is available, to forward the request to the corresponding service callee(s).

As mentioned before, the Service Bus is different to the Context Bus in that it is call based, meaning
that the caller (= the service requester) expects an answer to its message and might temporarily cease
its execution to wait for that.

• Once the service callee has completed the job it was asked to do, it puts his answer, the "service
response", on the Service Bus (as in "Lights should be off now, you’re welcome").

• The Service Bus makes sure that the answer really reaches the service caller application, which can
then proceed with its execution (knowing that the lights in the living room should be off).

6.4.3 UI Bus

There is one more bus you need to know of, the so called UI Bus (UI for user interaction).

The purpose of the UI Bus is to deliver messages that are somehow related to explicit user interaction.
For example, an application that wants the user to be notified about a certain event would use the UI Bus.
If the user reacts to this notification by issuing an explicit command to the system, then this information
would also go over the UI Bus.

6.5 Functionalities

The Middleware is the core part of universAAL platform and takes care that all universAAL nodes in a
Space can cooperate with each other. To do so it establishes peer to peer communications between them
so that they can share the different kinds of universAAL semantic communication: Context, Service and
User Interaction, following the shared Ontological Model.

133

6.5 Functionalities 6.5.3 Layer composition

6.5.1 Layer composition

• The Container is the part that lets the Middleware logic execute in different environments. There
are different Containers so that the Middleware can run on devices with plain Java, computers
or embedded systems running OSGi, Android smartphones, and so on. The Container determines
how the components of universAAL and the applications that use it are coded and built. In OSGi
they would be Bundles, in Android they would be APKs, and so forth. Currently universAAL only
officially supports these two.

• The Peering part is responsible for interconnecting and communicating the instances of the Mid-
dleware. More technologies can be added modularly. A hypothetic UPnP connector could discover
other nodes with this connector, and use bridging options for using multiple technologies.

• The Communication part is the one holding the ultimate logic of the Middleware that enables the
flow of universAAL semantic information across peers, by defining specific purposes Buses (Context,
Service, UI).

• The representation model defines how ontologies are handled.
• The serialization component encrypts and parses messages across nodes.

6.5.2 universAAL application

A universAAL Application is any piece of software that can run on the Container and that makes use
of the universAAL Buses or Managers, whether by consuming them or providing into them, in order to
provide a Service or a part of it. Regarding hardware sensor and actuator devices, these are connected
through "exporters", which are just like an application exporting the devices interfaces and information
into universAAL platform. There would be a different exporter per technology (KNX, ZigBee...).

6.5.3 uSpace

The universAAL platform defines the concept of uSpace as a logical environment in which all univer-
sAAL qpplications can communicate to each other and the platform through the same buses, seamlessly,
regardless of the node or container they run within and the physical network beneath.

• The Services provided by these applications are oriented to a specific human user (the Assisted
Person) or set of users.

• Communication across different Spaces is not possible except through a special Manager called uS-
pace Gateway, which takes care of message exchanges and authorization between different Spaces.
Moreover, it takes also care of connecting remote nodes that belong to the original Space, accom-
plishing a similar function to that of a VPN, when networked connection through Peering is not
possible.

134

6.6 Ontological Model 6.6.3

6.6 Ontological Model

In universAAL knowledge is shared in the form of Ontologies.

6.6.1 What ontologies are made of

• Resources are how the concepts are represented. They are the nodes in the mesh.

– They are identified by a URI.
– They can inherit from other resources, and have properties that link to other resources or

datatypes.

• Properties are links between the concepts.

– They are also identified by URIs and can also inherit from other properties.
– They can have restrictions upon them, like cardinality. resources or datatypes.

• Datatypes are the native data formats, like Boolean, Integer and so on. They are always present
by default and don’t have properties.

• Enumerations are sets of instances of Resources, representing different specific values that a
property can point to.

6.6.2 Context

Context information represents the environment of the system, from physical surrounding, including
users, to system information. Context communication is event based, forwarding updates of the context.
This is done in the form of Context Events, which are sent by Context Publishers, and can be consumed
by Context Subscribers.

6.6.3 How context information is shared

Context Events are the minimal unit of context information sharing and are built on the Ontological
model of universAAL. The minimal context information that can be extracted from an Ontological model

135

6.6 Ontological Model 6.6.4 Services

is a link of two concepts through a property, modelled as a triple with subject, predicate and object. This
is known as a statement.

• Context Publishers are applications that are capable of sending Context Events. They build
these events with the Ontological model and broadcast them.

• Context Subscriber are any application interested in consuming Context Events. They define a
filter to restrict which types of Events they are exactly interested in.

6.6.4 Services

Services are request/response interactions between applications. They are semantic, which means that
you don’t need to call a service like "turn on a light by ID" (which you can) but you can ask to for
services that "turn on all lights in a given location", without knowing them in advance. This is possible
because services are described with the Ontological model.

A Service Ontology is needed since it is the shared model between requester and provider. It works as
an anchor to the Ontological model and also allows restrictions over the original model to make services
more specific.

• Service Callees are those applications that provide services of certain Service Ontology. They do
so by registering Service Profiles which are the equivalent to methods. They represent the operation
to perform. Starting at the Service Ontology they describe arguments as a Path to a concept on
which an Effect is expected.

• Service Callers are the applications that request the execution of a service. Service Requests are
the counterpart of Service Profiles, they are built the same way but declare what the Caller wants

136

6.8 User Interaction 6.8.0

to execute. The Requests are matched to registered Profiles and if they are ontologically equivalent,
the Callee(s) that registered them will be called and will give an answer.

6.7 User Interaction

Direct User Interaction is achieved by universAAL applications in a decoupled fashion. They do not
handle how this information is presented to the user, only what is being presented (and handled in
return). To do so the interaction information is abstracted by representing it with an Ontological model.

• User Interaction Callers are the applications that want to have some kind of direct interaction
with the user. They build a Form that represents exactly what they want to show to the user and
what they want in return. Forms are the ontological representation of the typical user interaction
components, like textual inputs, multiple selections, buttons, and so on. Forms are created by UI
Callers and sent to UI Handlers to be rendered, filled by user, and sent back to UI Callers to be
processed.

• User Interaction Handlers are special types of applications in charge of translating the Forms
sent by UI Callers to a physical rendering that a user can interact with, such as a GUI, a sound
output or Web page. Then interpret the user responses to fill in the information requested by UI
Callers into the Form and send it back. There can be several UI Handlers in different locations,
with different modalities, and the UI Callers are oblivious to them, thus achieving multi modal and
multi location interaction.

137

6.8 Applications 6.8.0

6.8 Applications

An application, in addition to its own business logic, and regardless of its structure, needs one or more
of the universAAL "wrappers" presented until now:

• Context Publisher

• Context Subscriber

• Service Caller

• Service Callee

• User Interaction Caller

Because Ontologies are used as data model, the Application must make use of an Ontology describing its
information domain. An application can define its own ontological model but it is strongly recommended
that an existing implementation is reused (if it exists), for interoperability purposes.

138

	Ontologies & Description Logics
	Introduction
	Prolegomena to ontologies
	ER Diagram
	UML diagram
	Older approaches

	Description Logics
	Knowledge Base
	Concepts, roles and descriptions
	DL languages
	Language expressivity vs. complexity
	Some DL examples
	Formal semantics & interpretations
	Terminological axioms
	Interpretation satisfiability
	TBox (terminology)
	ABox (world description)
	Reasoning with DL

	Semantic Web Technologies
	The Semantic web stack
	XML
	DTD and XML Schema
	RDF
	RDFS

	OWL
	OWL versions
	Classes and Individuals
	Class constructor
	Classes and individual
	Properties
	Hierarchy
	List of properties
	Property Restrictions

	SWRL
	Rules and axioms
	Human Readable Syntax
	The XML Concrete Syntax
	Rule assertion
	Ontology

	Sensors
	Introduction
	Cameras
	Face detection / Facial expression recognition
	Person and object tracking / Body posture recognition

	RGB-D Cameras
	Microsoft Kinect

	Stereo Cameras
	Microphones
	Event Cameras
	Presence sensors
	RFID Antennas
	Laser Scanner
	3D laser scanner
	Accelerometers and gyroscopes
	GPS and environmental sensors
	Switches
	Artefacts
	Sensing Devices Classification
	Dimensions and domain of data
	Dimensional space and data processing
	A simple device
	From simple to complex devices
	Other classification methods
	Ability to localize themselves

	Self-localization
	Introduction
	Geometric and topological localization
	Relative localization
	Relative vs. absolute localization
	Human Odometry (1)
	Euler angles
	Human Odometry (2)
	Visual Odometry

	Absolute localization
	Landmarks
	Trilateration
	Global Positioning System (Trilateration)

	Triangulation
	Microphone triangulation

	Statistical approaches
	Introduction
	Kalman filter
	Particle Filter
	Summary

	Context-awareness
	What is the context?
	Categories of Context
	Context-aware computing
	Support for Building Applications
	Context toolkit
	Context Toolkit Situation Abstraction
	Context Toolkit implementation

	Context assessment with BN
	Bayes and joint probability tables
	Belief updating, marginal and conditional independence
	Bayesian Networks
	Statistical inference with BN
	Explaining away BN
	Top-down and bottom-up reasoning in BN
	Independencies in BN
	Representation of Compact Conditional Distributions
	Naive Bayesian Networks
	Learning in BN
	Example of context assessment
	Dynamic Bayesian Network
	Markov Model
	Markov Processes

	Context awareness
	State of the art
	Description Logic Basic Principles
	System Architecture
	Offline phase: designing the TBox
	Online phase: populating the ABox

	BDI Agents
	Introduction
	Procedural Reasoning System
	AgentSpeak
	Exercise

	universAAL
	Introduction
	The software
	Middleware
	The three buses
	Context Bus
	Service Bus
	UI Bus

	Functionalities
	Layer composition
	universAAL application
	uSpace

	Ontological Model
	What ontologies are made of
	Context
	How context information is shared
	Services

	User Interaction
	Applications

