
ECN

–

Computer Vision

–

Lecture Notes

Davide Lanza

2018-2019

ii

Contents

1 Introduction to CoVis 1

1.1 What is computer vision . 1

1.2 Vision in humans . 1

1.3 Computer Vision vs Computer Graphics . 2

2 Visual Odometry 3

2.1 A brief history of VO . 4

2.2 From SFM to VO . 4

2.3 VO working principle . 5

3 Image Formation 9

3.1 Overview on optics . 9

3.2 Perspective geometry . 13

3.3 Digital cameras . 17

3.4 Perspective camera model . 18

3.5 Lens distortion . 22

4 Image Formation II: Calibration 25

4.1 Non-linear algorithms: P3P and PnP for calibrated cameras 25

4.1.1 DLT from general 3D objects . 25

4.2 Linear algorithms (DLT) for uncalibrated cameras 28

4.2.1 DLT from 3D objects . 28

4.2.2 DLT from planar grids . 31

4.3 DLT vs PnP . 33

4.4 Non-Linear Estimation . 34

5 Filtering and Edge detection 37

5.1 Noise reduction . 37

5.1.1 1D Filtering for Gaussian Noise . 38

5.1.2 2D Filtering - Correlation and convolution 39

5.1.3 2D Filtering - Separable Filter Kernels . 43

5.1.4 Lowpass Filter Kernels . 44

5.1.5 Non-linear filtering . 47

5.2 Edge detection . 47

5.2.1 1D Sharpening (Highpass) Spatial Filters 47

5.2.2 2D Sharpening Spatial Filters . 51

5.3 Canny edge-detection algorithm . 52

6 Feature Point Detection 55

6.1 Filters for Feature detection and Point-feature extraction 55

6.2 Automatic Scale Selection, Detectors and Descriptors 69

iii

iv CONTENTS

7 Multiple-view Geometry 85
7.1 Epipolar Geometry . 85
7.2 Triangulation . 99

8 Deep Learning and Semantic Segmentation 107
8.1 Introduction . 107
8.2 The perceptron . 108
8.3 Multilayer feedforward neural networks . 110
8.4 Convolutional neural networks . 112

8.4.1 Backpropagation for FCN training . 112
8.4.2 Elements of convolutional neural networks 112
8.4.3 Learning a deep neural network with backpropagation 115
8.4.4 Applications . 116

Chapter 1

Introduction to CoVis

1.1 What is computer vision

Computer vision deals with the automatic extraction of “meaningful” information from images
and videos, as shown in Figure 1.1. In this course we will deal only with geometric informa-
tion.

Figure 1.1: Two types of information extraction

But why study computer vision? CoVis is useful for many goals, like relieving humans of boring
and easy tasks; enhance human abilities (human-computer interaction, visualization, augmented
reality); organize and give access to visual content; and (for us most important) perception for
autonomous robots. In fact in an Artificial system we have three phases: (...→) Perception
→ Learning → Action (→ Perception →...) and CoVis deals with perception problems.

1.2 Vision in humans

Vision is our most powerful sense. Half of primate cerebral cortex is devoted to visual processing.
Retina is ∼1,000 mm2. It contains 130 million photo-receptors (120 mil. rods (low light vision)
and 10 mil. cones for color sampling) and it provides enormous amount of information: data-rate
of ∼3GBytes/s.

To match the eye resolution we would need a 500 Megapixel camera. But in practice the acuity
of an eye is 8 Megapixels within a 18-degree field of view (5.5 mm diameter) region called
fovea.

1

2 CHAPTER 1. INTRODUCTION TO COVIS

Figure 1.2: The human vision system

CoVis is hard because it deals with the question “How do we go from an array of number (digital
image) to recognizing an object?”.

CoVis research was born in the 60s, and one of the earliest articles was by L. G. Roberts
(Machine Perception of Three Dimensional Solids packet.cc/files/mach-per-3D-solids.html), a
Ph.D. thesis for the MIT Department of Electrical Engineering, published in 1963. Another
important publication was by the Artificial Intelligence group of MIT: in 1966 Semyour Papert
published The summer vision project.

1.3 Computer Vision vs Computer Graphics

What is the difference between Computer Vision and Computer Graphics? CoVis deals on how
to describe the world that we see in one or more images and to reconstruct its properties, such
as shape, illumination, and color distributions, so it is structured to solve an inverse problem:
recover some unknowns given insufficient information to fully specify the solution:

Computer Vision = Physics (radiometry, optics, sensor design) + Computer Graphics (3D mod-
eling, rendering, animation)

http://www.packet.cc/files/mach-per-3D-solids.html

Chapter 2

Visual Odometry

Intelligent systems require robust vision, characterized by feature invariance, good prior,
tractable representations, efficient learning and inference and model uncertainty.

Visual Odomentry (VO) is the process of incrementally estimating the pose of the vehicle by
examining the changes that motion induces on the images of its onboard cameras. It is based
on the idea that humans do not process all the information from the eye, but with them they
normally detect only the variations in the vision environment:

But why VO? Contrary to wheel odometry (see MobRo course), VO is not affected by wheel
slippage on uneven terrain or other adverse conditions. It also leads to more accurate tra-
jectory estimates compared to wheel odometry (relative position error 0.1%-2%). VO can be
used also as a complement to wheel encoders (wheel odometry), GPS, inertial measurement
units (IMUs), laser odometry and it is crucial for flying, walking, and underwater robots

For VO we need 4 assumptions: sufficient illumination in the environment, dominance of
static scene over moving objects, enough texture to allow apparent motion to be extracted
and sufficient scene overlap between consecutive frames.

3

4 CHAPTER 2. VISUAL ODOMETRY

2.1 A brief history of VO

1980: First known VO real-time implementation on a robot by Hans Moraveck PhD thesis
(NASA/JPL) for Mars rovers using one sliding camera (sliding stereo).

1980: First known VO real-time implementation on a robot by Hans Moraveck PhD thesis
(NASA/JPL) for Mars rovers using one sliding camera (sliding stereo).

1980 to 2000: The VO research was dominated by NASA/JPL in preparation of the 2004
mission to Mars.

2004: VO was used on a robot on another planet: Mars rovers Spirit and Opportunity (see
seminal paper from NASA/JPL, 2007).

2004: VO was revived in the academic environment by David Nister’s “Visual Odometry” pa-
per. The term VO became popular.

To a full introduction see:

• Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and
Fundamentals, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011.

• Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching, Robustness,
and Applications, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012.

• C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.D. Reid, J.J.
Leonard, Past, Present, and Future of Simultaneous Localization and Mapping:
Toward the Robust-Perception Age, IEEE Transactions on Robotics, Vol. 32, Issue
6, 2016.

2.2 From SFM to VO

Structure for Motion (SFM) is more general than VO and tackles the problem of 3D re-
construction and 6DOF pose estimation from unordered image sets. We can see an example in
Figure 2.1.

Figure 2.1: Reconstruction from 3 million images from Flickr.com. Cluster of 250 computers,
24 hours of computation. Paper: Building Rome in a Day, ICCV’09

2.3. VO WORKING PRINCIPLE 5

VO is a particular case of SFM, that focuses on estimating the 6DoF motion of the camera
sequentially (as a new frame arrives) and in real time. Be careful though because terminology:
sometimes SFM is used as a synonym of VO!

While VO focuses on incremental estimation/local consistency, another technique called Vi-
sual Simultaneous Localization And Mapping (V-SLAM) focuses on globally consistent
estimation.

V-SLAM = VO + loop detection + loop closure

The choice between VO and V-SLAM depends on the tradeoff between performance and consis-
tency, and simplicity of implementation. VO trades off consistency for real-time performance,
without the need to keep track of all the previous history of the camera (see Figure 2.2).

Figure 2.2: VO vs V-SLAM

2.3 VO working principle

In this section we will illustrate the steps of VO computation:

1. Compute the relative motion Tk from images Ik−1 to image Ik:

Tk =

[
Rk,k−1 tk,k−1

0 1

]

2. Concatenate them to recover the full trajectory of 6DoF poses Cn:

Cn = Cn−1Tn

6 CHAPTER 2. VISUAL ODOMETRY

3. An optimization over the last m poses can be done to refine locally the trajectory (Pose-
Graph or Bundle Adjustment):

But how do we estimate the relative motion Tk (step 1)? We do it in this way:

Image 𝐼𝑘−1 Image 𝐼𝑘

𝑇𝑘

𝐼𝑘
𝐼𝑘−1

Tk = arg min
T

∫ ∫

R̄
ρ
[
Ik
(
π
(
T · π−1 (u, du)

))
− Ik−1(u)

]
du

We have some direct methods for dense geometric reconstruction (see D. Cremers, Direct
methods for 3D reconstruction and visual SLAM, International Conference on Machine
Vision Applications, 2017) to simplify the the image alignment process. The direct image
alignment minimizes the sum of per-pixel intensity difference:

SVO [Forster et al. 2014]
100 features × 4 × 4 patches
~ 2,000 pixels

DTAM [Newcombe et al. ‘11]
300’000+ pixels

LSD [Engel et al. 2014]
~10’000 pixels

Dense Semi-Dense Sparse

𝑇𝑘,𝑘−1 = argmin
𝑇

෍ 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎
2

𝑖

SVO [Forster’14]
100-200 x 4x4 patches ≅ 2,000 pixelsDTAM [Newcombe ‘11] REMODE [Pizzoli’14]

300’000+ pixels
LSD-SLAM [Engel’14]

~10,000 pixels

(𝒖′ and 𝒖𝑖 are corresponding pixels in images 𝐼𝑘 and 𝐼𝑘−1, respectively)

2.3. VO WORKING PRINCIPLE 7

VO computes the camera path incrementally (pose after pose) as shown in the flowchart in
Figure 2.3.

Figure 2.3: VO Flowchart

8 CHAPTER 2. VISUAL ODOMETRY

Chapter 3

Image Formation

3.1 Overview on optics

Historical context:
– Pinhole model: Mozi (470-390 BCE), Aristotle (384322 BCE)
– Principles of optics (including lenses): Alhacen (965-1039)
– Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
– First photo: Joseph Nicephore Niepce (1822)
– Daguerrotypes (1839)
– Photographic film (Eastman, 1888, founder of Kodak)
– Cinema (Lumiere Brothers, 1895)
– Color Photography (Lumiere Brothers, 1908)
– Television (Baird, Farnsworth, Zworykin, 1920s)
– First consumer camera with CCD: Sony Mavica (1981)
– First fully digital camera: Kodak DCS100 (1990)

The question behind the image formation study is “how are objects in the world captured in an
image?”.

Figure 3.1: Naive approach

If we place a piece of film in front of an object, as shown in Figure 3.1, we don’t get a reasonable
image.

In computer graphics we have light-material interaction models (e.g. Shading model): to
have more photo-realistic view in computer graphics you need to compute those models, but
you need a powerful GPU for that, because you have to compute the reflection, refraction,

9

10 CHAPTER 3. IMAGE FORMATION

diffusion... of the light while interacting with the surface in w.r.t. the observer view point.
The 3D rendering of the image is hard to compute because there are many factor to take in
consideration:

Based on this model, the pinhole camera has been created. How we can project a 3D image
on that surface. The idea will be to “catch” only a small part of the light. In fact, in a pinhole
camera we add a barrier to block off most of the rays to reduce the blurring. Here the opening
is known as the aperture. If i want to increase the size of my viewpoint i have to increase my
hole i have to increase the aperture, but I will notice a worse blurring effect. In fact in an ideal
pinhole, only one ray of light reaches each point on the film, so the image can be very dim, but
making the aperture bigger makes the image blurry (see Figure 3.3).

Figure 3.2: Pinhole camera

Figure 3.3: Blurring problem

So the main solution, later on, was to catch all the needed lights with a lens (Figure 3.4). In
here a lens focuses light onto the film. Notice that the rays passing through the Optical Center
are not deviated. One of the parameter that we gave to take into consideration while processing
the image is the focal length f (Figure 3.5), the distance of the point where all the rays converge.

3.1. OVERVIEW ON OPTICS 11

Figure 3.4: Image formation using a converging lens

Figure 3.5: Converging lens model

So, let’s analyze a thin lens equation. We have the situation illustrated by Figure 3.6 and we
want to find a relationship between the focal length f , the distance object-lens z and the
distance film-lens e.

Figure 3.6: Lens geometrical model

We have then the following equation, using similar triangles properties:

Any object point satisfying this equation is in focus. So, can we use this to measure distances?

For a fixed film distance from the lens e0, there is a specific distance between the object and
the lens, at which the object appears in focus in the image. The other points project to a “blur
circle” in the image, as seen in Figure 3.7.

12 CHAPTER 3. IMAGE FORMATION

Figure 3.7: Lens focus

For an object out of focus the blur circle has radius:

R =
Lδ

2e

So a small L (pinhole) gives a small R (Blur Circle). To capture a “good” image we have
to adjust camera settings, such that R remains smaller than the image resolution. But what
happens if z >> f and z >> L? We have what we call the Pin-hole approximation (Figure
3.8).

Figure 3.8: The Pin-hole approximation

So, we need to adjust the image plane such that objects at infinity are in focus. As the object
gets far, the image plan gets closer to the focal plane:

1

f
=

1

z
'0

+
1

e
→ 1

f
' +

1

e
→ f ' e

This is known as Pinhole Approximation and the relation between the image and object becomes:

h′

h
=
f

z
=→ h′ =

f

z
h

The dependence of the image of an object on its depth (i.e. distance from the camera) is known
as perspective. f/z is called scale ambiguity factor and determines the relation between
the 3D and the 2D projected image. To process the images and get this information (recovering
h from h′) we need, for example, two images in parallax (→ visual odometry).

In electronic cameras the CCO chip/CMOS sensor distance from the lens is important in order
to maintain the focus on the object, so the glue that links it to the camera body has to be of
good quality and assure no movements:

3.2. PERSPECTIVE GEOMETRY 13

3.2 Perspective geometry

In image processing for controlling a robot, modelling explicitly the perspective effect is a big
problem (Figure 3.9: how can I detect the same object if way smaller to another because farther
or how can I know that the lines in a landscape does not converge in the vanishing point on the
horizon line?)

Figure 3.9: Perspective problems

But in the perspective projection, what is preserved? The straight lines are still straight. But
what is lost? Lengths and angles (see Figure 3.10).

Figure 3.10: Perspective projection lines

14 CHAPTER 3. IMAGE FORMATION

Parallel lines in the world intersect in the image at a “vanishing point” and parallel planes in
the world intersect in the image at a “vanishing line” (Figure 3.11). To process those “infinite”
points represented in the perspective figures we cannot use Euclidean geometry.

Figure 3.11: Vanishing points and lines

Let’s consider a straight line l in an image and a point x on it.

In 2D x = [x y]T and l = [a b c]T . We know that x ∈ l ⇐⇒ ax+ by + c = 0. So, the 2D
algebraic line eq. is equal to his Cartesian representation, so we can write:

ax+ by + c = [a b c] · [x y 1]T = lT · [x y 1]T = lT · [x 1]T = 0

We know that [x 1]T is the homogeneous vector of the point x. So:

lT · [x 1]T = 0 = λlT · [x 1]T ∀λ ∈ R → lT · [λx λ]T = 0

So, as we can see, we are able to treat the scale factor ambiguity thanks to the homogeneous
vector: we just need to divide the first two rows (vector λx) for the third row (λ) and we
obtain the original point. We define then the 2D homogeneous points projective space as
P2 = R− (0, 0, 0)T . So we will have:

2D points (pxl. coords in an image) x = (x y)T where (x, y) ∈ R2

2D homogeneous points x̃ = (x̃ ỹ w̃)T where (x̃, ỹ, w̃) ∈ P2




x =

x̃

w̃

y =
ỹ

w̃

→ perspective propjection → h′ =
f

z
h

So we can rewrite the previous equation like this:

x̃ = [x̃ ỹ w̃]T l = [a b c]T x̃ ∈ l ⇐⇒ lT x̃ = x̃T l = 0

We can then express a normal vector with different notations:

l̃ = (n̂x; n̂y; d)T = (n̂, d) with ||n̂|| = 1.

or, setting n̂ = (cos θ; sin θ)T , we can express it like:

(n̂, d)T Polar coordinates

The line at infinity is the one that contains all the (ideal) points at infinity and it cannot be
normalized:

m̃ = (0, 0, 1)T

3.2. PERSPECTIVE GEOMETRY 15

– Intersection and join operators:

We said that the point x lies on the line l if and only if lT x̃ = x̃T l = 0.

We define also an intersection operator that allows us to find the intersection of two lines l
and l′ is x̃ = l× l′:

l× l′ =

∣∣∣∣∣∣

i j k
l1 l2 l3
l′1 l′2 l′3

∣∣∣∣∣∣
=




+(l2l
′
3 − l′2l3)

−(l1l
′
3 − l′1l3)

+(l2l
′
1 − l′1l2)




Let’s see an example : compute the point of intersection of the two lines l and m in the figure
below:

We can also “define” a join operator that returns the line joining two points x and x′:

l = x̃× x̃′

That’s the same computation but with points instead of lines!

Let’s notice that in the case of an intersection of parallel lines if l = (a, b, c)T and l′ =
(a, b, c′)T then

l× l′ =

∣∣∣∣∣∣

i j k
a b c
a b c′

∣∣∣∣∣∣
=




bc′ − bc
−(ac′ − ac)
ab− ab


 =




b(c′ − c)
−a(c′ − c)

0




So we have a point x in the form l× l′ = (x; y; 0)T → we have a point at infinite (∈ l∞). .

We can also say that our peojective space is P2 = R2∪l∞ → in P2 there is no distinction between
ideal points and other.

So, if we want to compute the join of 2 points (the line passing through the two points) we just
do:

l ∼
equal up to a

scale factor

x̃1 × x̃2 = [x1 y1 1]T × [x2 y2 1]T =




y2 − y1

x2 − x1

x1x2 − x2y1


 = [a b c]T

Let’s consider the case of a point at infinite (w̃ = 0):

x̃ = [x̃ ỹ w̃ = 0]T → x̃ = [x̃/w̃ ỹ/w̃]T = [∞ ∞]T

We can notice that, taking a random point at infinite:

x̃∞ = [−b a 0]T x̃T∞l∞ = [−b a 0][0 0 1]T = 0

We can have a model for the projective plane (Figure 3.12) in which we can notice exactly
one line through two points and exactly one point at intersection of two lines.

16 CHAPTER 3. IMAGE FORMATION

Figure 3.12: Model for the projective plane

Let’s notice that there is a relation about points, lines and homogeneous coordinates:

Duality principle: To any theorem of 2-dimensional projective geometry there corresponds a
dual theorem, which may be derived by interchanging the role of points and lines in the original
theorem.

There is a link between the field of view and the focal length, as shown in Figure 3.13.

Figure 3.13: Field of view (θ), diameter of lens (W), the distance object-lens (Z) and the focal
length (f)

3.3. DIGITAL CAMERAS 17

3.3 Digital cameras

In digital cameras the film is substituted by a sensor array, that is often an array of charge
coupled devices in which each CCD/CMOS is light sensitive diode that converts photons (light
energy) to electrons (see Figure 3.14).

Figure 3.14: Image sensing pipeline, showing the various sources of noise as well as typical digital
post-processing steps.

We will consider images in a matrix form like shown in Figure 3.15.

Figure 3.15: Digital image characteristics

Regarding the color sensing in digital cameras, we have to know that the color sensor in the
camera is built respecting the Bayer pattern (invented by Bayer in 1976, who worked at
Kodak), a pattern that places green filters over half of the sensors (in a checkerboard pattern),
and red and blue filters over the remaining ones (See Figure 3.16).

This is because the luminance signal is mostly determined by green values and the human visual
system is much more sensitive to high frequency detail in luminance than in chrominance.

18 CHAPTER 3. IMAGE FORMATION

Figure 3.16: Bayern pattern sensor disposition and functioning

For each pixel, the sensor estimate the missing color components from neighboring values
(demosaicing):

There is also another chip design: the Foveon chip design (http://www.foveon.com), that stacks
the red, green, and blue sensors beneath each other but has not gained widespread adoption.

So, in the end, we have an image that is created from three monochromatic images, as seein in
Figure 3.17.

Figure 3.17: RGB color space

3.4 Perspective camera model

We want to use a camera as a sensor. For convenience, the image plane is usually represented
in front of C (see Figure 3.18) such that the image preserves the same orientation (i.e. not
flipped). Note: a camera does not measure distances but angles! → a camera is a “bearing
sensor”. In fact you have two angles: azimuth (ϕ) and elevation. To have a depth sensor we
need a second camera!

3.4. PERSPECTIVE CAMERA MODEL 19

C = optical center = center of the lens

Image plane

Pc

C

O

u

p



Zc

f

v

O = principal point

Zc = optical axis

Xc

Yc

Figure 3.18: Perspective camera

But how to pass from world to pixels coordinates? The goal is to find the pixel coordinates
(u, v) of point Pw in the world frame. We need 3 steps:

0. Convert world point Pw to camera point Pc through rigid body transform [R|T]

1. Convert Pc to image-plane coordinates (x, y)

2 Convert (x, y) to (discretized) pixel coordinates (u, v)

Pc

O

u

v

p

Xc

y

x

C

Zc

Yc

[R|T]

W

Zw

Yw

Xw

Pw

Step 1. Convert Fc to Fo

First we compute from the camera frame Fc to the image plane Fo. The camera point Pc =
(Xc, 0, Zc)

T projects to p = (x, y)T onto the image plan. Then, from similar triangles:

20 CHAPTER 3. IMAGE FORMATION

Image Plane
f

Pc=(Xc , 0 , Zc)
T

C

p
Xc

Xc

Zc
x

O

x

f
=
Xc

Zc
→ x = f

Xc

Zc

Similarly, in the general case:
y

f
=
Yc
Zc
→ y = f

Yc
Zc

Step 2. Convert Fc to Fo

Then we pass from the camera frame Fc to pixel coordinates Fo. To convert p from the local
image plane coords (x, y)T to the pixel coordinates (u, v)T , we need to account for:

• The pixel coordinates of the camera optical center O = (u0, v0)T

• Scale factors ku, kv for the pixel-size in both dimensions:

u = u0 + kux→ u = u0 + kuf
Xc

Zc

v = v0 + kvy → v = v0 + kvf
Yc
Zc

Then we use homogeneous coordinates for linear mapping from 3D to 2D, by introducing an
extra element (scale):

O

v

(0,0)
u

(u0,v0) x

y p

Image plane

p =

(
u
v

)
→ p̃ =



ũ
ṽ
w̃


 = λ



u
v
1




So we have:

u = u0 + kuf
Xc

Zc

v = v0 + kvf
Yc
Zc

3.4. PERSPECTIVE CAMERA MODEL 21

Image plane (CCD)

Pc

C

O

u

v

p

Zc

f

Xc

Yc

Expressed in matrix form and homogeneous coordinates:



λu
λv
λ


 =



kuf 0 u0

0 kvf v0

0 0 1





Xc

Yc
Zc




Or alternatively:


λu
λv
λ


 =



αu 0 u0

0 αv v0

0 0 1





Xc

Yc
Zc


 = K



Xc

Yc
Zc




K is called the “Calibration Matrix” or the “Matrix of Intrinsic Parameters”. u and v are
the focal length in pixels.

Sometimes, it is common to assume a skew factor (K12 6= 0) to account for possible misalignments
between CCD and lens. However, the camera manufacturing process today is so good that we
can safely assume K12 = 0 and αu = αv.

Step 0. Convert Fw to Fc

Now we can finally add the conversion from the world frame to the camera frame:



Xc

Yc
Zc


 =



r11 r12 r13

r21 r22 r23

r31 r32 r33





Xw

Yw
Zw


+



tx
ty
tz


→

→



Xc

Yc
Zc


 =



r11 r12 r13 |tx
r21 r22 r23 |ty
r31 r32 r33 |tz







Xw

Yw
Zw
1


 = [R|T]




Xw

Yw
Zw
1




So we can have the so-called Perspective Projection Equation:

λ



u
v
1


 = K



Xc

Yc
Zc


 → λ



u
v
1


 = K[R|T]




Xw

Yw
Zw
1




22 CHAPTER 3. IMAGE FORMATION

3.5 Lens distortion

Lens causes distortions on images. Radial distortions (Figure 3.19) in images shoot with
lenses are very common and have to be taken in consideration.

Figure 3.19: Radial distortions

The standard model of radial distortion is a transformation from the ideal coordinates (u, v)T

(i.e., undistorted) to the real observable coordinates (distorted) (ud, vd)
T .

The amount of distortion of the coordinates of the observed image is a nonlinear function of
their radial distance. For most lenses, a simple quadratic model of distortion produces good
results:

(
ud
vd

)
= (1 + k1r

2)

(
u− u0

v − v0

)
+

(
u0

v0

)

where r2 = (u− u0)2 + (v − v0)2

Depending on the amount of distortion (an thus on the camera field of view), higher order
terms can be introduced:

(
ud
vd

)
= (1 + k1r

2 + k2r
4 + k3r

6)

(
u− u0

v − v0

)
+

(
u0

v0

)

3.5. LENS DISTORTION 23

Summary: Perspective projection equations
• To recap, a 3D world point P = (Xw, Yw, Zw)

T projects into the image point
p = (u, v)T

p̃ = λ




u
v
1


 = K[R|T]




Xw
Yw
Zw
1


 where K =



αu 0

v

u

0

0

0 α v
0 0 1




and λ is the depth (λ = Zc) of the scene point.
• If we want to take into account the radial distortion, then the distorted

coordinates (ud, vd)T (in pixels) can be obtained as

ud
vd

= (1 + k1r
2)

u− u0

v − v0 +
u0

v0

() () ()

where
r2 = (u− u0)

2 + (v − v0)2

See also the OpenCV documentation: docs.opencv.org/2.4.13.3/modules/calib3d/doc/camera -
calibration and 3d reconstruction.html

Exercise 1 Determine the Intrinsic Parameter Matrix (K) for a digital camera with image
size 640x480 pixels and horizontal field of view equal to 90deg. Assume the principal point in
the center of the image and squared pixels. What is the vertical field of view?

Exercise 2 Prove that world’s parallel lines intersect at a vanishing point in the camera image:

http://docs.opencv.org/2.4.13.3/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/2.4.13.3/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

24 CHAPTER 3. IMAGE FORMATION

Chapter 4

Image Formation II: Calibration

We have the perspective camera model (see Chapter 3) and we can also generalize it to generic
camera model or unit sphere camera model, but still single view camera (a single center
of projection).

Intrinsic parameters:



fx 0 u0

0 fx v0

0 0 1




If we don’t know the intrinsic parameters we call the camera uncalibrated (we will see cali-
bration also for uncalibrated cameras)

4.1 Non-linear algorithms: P3P and PnP for calibrated cameras

4.1.1 DLT from general 3D objects

So, let’s see how the pose determination depends by the number of n points of projection (PnP
Problem).

Given known 3D landmarks in the world frame and given their image correspondences in the
camera frame, determine the 6DOF pose of the camera in the world frame (including the in-
trinsinc parameters if uncalibrated):

25

26 CHAPTER 4. IMAGE FORMATION II: CALIBRATION

So, we said that with our previous model we have only onepoint of projection. We can ask
ourself then: how many points are enough?

• 1 Point: infinitely many solutions.

• 2 Points: infinitely many solutions, but bounded.

• 3 Points: (no 3 collinear) finitely many solutions (up to 4) → P3P problem.

• 4 Points: Unique solution

Let’s see:

– 1 Point: infinitely many solutions (classical projection) all along the line:

– 2 Points: infinitely many solutions, but bounded by the segments shown here below:

4.1. NON-LINEAR ALGORITHMS: P3P AND PNP FOR CALIBRATED CAMERAS 27

– 3 Points: (no 3 collinear) finitely many solutions (up to 4) → when you move to three points
you fall in what is called P3P problem:

So these 3 equations show a relationship that links the distances from the three point in the
world frame to the center of the camera LA,B,C with the angles θAB,BC,AC and the distance
between the points s1,2,3 (the points in the world, not the one projected in the image plane!).
So, from the equations appears that the angles θ between the points can be computed knowing
the distances s between the image points. In fact, if you know the focal length, you can use the
model that we saw in Chapter 3.

Now we will show the algebraic approach (Fischler and Bolles, 1981) used to reduce those
three equations to a 4th order equation:

• It is known that n independent polynomial equations, in n unknowns, can have no more
solutions than the product of their respective degrees. Thus, the system can have a
maximum of 8 solutions.

• However, because every term in the system is either a constant or of second degree, for
every real positive solution there is a negative solution.

• Thus, with 3 points, there are at most 4 valid (positive) solutions.

• A 4th point can be used to disambiguate the solutions.

By defining x = b/a, it can be shown that the system can be reduced to a 4th order equation:

G0 +G1x+G2x
2 +G3x

3 +G4x
4 = 0

28 CHAPTER 4. IMAGE FORMATION II: CALIBRATION

So we can conclude with what we already anticipated:
– 4 Points: unique solution

It is important to note that using more points (n > 4) is faster.

If we see an application to Monocular Visual Odometry, we can notice how we can implement
the camera pose estimation from known 3D-2D correspondences:

4.2 Linear algorithms (DLT) for uncalibrated cameras

4.2.1 DLT from 3D objects

If the camera is uncalibrated you will need to perform a camera calibration. The calibration
is the process to determine the intrinsic and extrinsic parameters of the camera model.

A method proposed in 1987 by Tsai consists of measuring the 3D position of n ≥ 6 control
points on a three-dimensional calibration target and the 2D coordinates of their projection in
the image. This problem is also called “Resection”, or “Perspective from n Points” (before was
“Pose from n points”), or “Camera pose from 3D-to-2D correspondences”, and is one of the
most widely used algorithms in Computer Vision and Robotics.

What is the solution to this problem? The intrinsic and extrinsic parameters are computed
directly from the perspective projection equation. Let’s see how:

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we neglect
the radial distortion):

Don’t understand this part: R has 8 DoF, we put some constraints: det(R) = +1, the
column vector ||ri1||2 = 1 , the row vector ||r1i||2 = 1, R−1 = RT

4.2. LINEAR ALGORITHMS (DLT) FOR UNCALIBRATED CAMERAS 29

So, we start with the Perspective Projection Equation:

In those equations the notation mT
i is used to indicate the i-th row of M . Then, a conversion

from homogeneous coordinates back to pixel coordinates leads to:

By re-arranging the terms, we obtain:

For n points, we can stack all these equations into a big matrix:

30 CHAPTER 4. IMAGE FORMATION II: CALIBRATION

So we have a homogeneous linear system:

A ·M = 0

Minimal solution:
– A(2n× 12) should have rank = 11 to have a unique (up to a scale) non-trivial solution M
– Each 3D-to-2D point correspondence provides 2 independent equations
– Thus, 5 + 1

2 point correspondences are needed (in practice 6 point correspondences!)

Over-determined solution:
– n ≥ 6 points – A solution is to minimize ||AM ||2 subject to the constraint ||M ||2 = 1. It can
be solved through Singular Value Decomposition (SVD). The solution is the eigenvector
corresponding to the smallest eigenvalue of the matrix ATQ (because it is the unit vector x that
minimizes ||Ax||2 = xTATAx.1

– Matlab instructions: [U,S,V] = svd(A); M = V(:,12);

Degenerated configurations:
– Points lying on a plane and/or along a single line passing through the projection center:

– Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3)

1See in Appendix - Handritten Notes the SVD methodology

4.2. LINEAR ALGORITHMS (DLT) FOR UNCALIBRATED CAMERAS 31

Solving for K, R, T :
Once we have the M matrix, we can recover the intrinsic and extrinsic parameters by remem-
bering that:

However, notice that we are not enforcing the constraint that R is orthogonal (i.e. RTR = I).
To do this, we can use the so-called QR factorization of M , which decomposes M into a R
(orthogonal), T , and an upper triangular matrix (i.e. K).

4.2.2 DLT from planar grids

A calibration method proposed by Tsai in 1987 is based on non co-planar grids (instead of
3D objects):

Tsai calibration is based on DLT algorithm, which requires points not to lie on the same plane.
That is not the best choice.

An alternative method (today’s standard camera calibration method) consists of using a
planar grid (e.g., a chessboard) and a few images of it shown at different orientations.This
method was invented by Zhang (1999) in Microsoft:

32 CHAPTER 4. IMAGE FORMATION II: CALIBRATION

In a camera calibration from planar grids we need to find the homographies. Our goal is to
compute K, R, and T that satisfy the perspective projection equation (we neglect the radial
distortion). Remember that since the points lie on a plane (advantage of using a planar grid),
we have Zw = 0:

So we found the matrix H called Homography, where hTi is the i-th row of H.

By re-arranging the terms, we obtain:

For n points, we can stack all these equations into a big matrix:

So we have a homogeneous linear system:

Q ·H = 0

4.3. DLT VS PNP 33

Minimal solution:
– Q(2n× 9) should have rank = 11 to have a unique (up to a scale) non-trivial solution H
– Each point correspondence provides 2 independent equations
– Thus, a minimum of 4 non-collinear points are needed.

Over-determined solution:
– n ≥ 4 points – It can be solved through Singular Value Decomposition ((same considera-
tions as the case before apply).
– Matlab instructions: [U,S,V] = svd(Q); H = V(:,9);

Solving for K, R, T :
H can be decomposed by recalling that:

It is possible to find a demo of Camera Calibration Toolbox for Matlab (world’s standard toolbox
for calibrating perspective cameras) at www.vision.caltech.edu/bouguetj/calib doc/

There are a lot of application of calibration from planar grids today, for example in Augmented
reality and in Robotics (beacon-based localization).

4.3 DLT vs PnP

If the camera is calibrated, only R andT need to be determined. In this case, should we use
DLT (linear system of equations) or PnP (nonlinear)?

– BibRef : Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Prob-
lem, IJCV’09

Accuracy vs noise:

Accuracy vs number of points:

http://www.vision.caltech.edu/bouguetj/calib_doc/

34 CHAPTER 4. IMAGE FORMATION II: CALIBRATION

Timing:

4.4 Non-Linear Estimation

Consider a matrix X of data values and an objective function f(X;a) where a is the set of
parameters to be estimated.

When f is a quadratic function, which means ∇f (with respect to the parameters) is linear,
minimizing this is straight-forward. Here, we are interested in the case that f is non-quadratic,
which means that ∇f is non-linear.

Two examples :

Ex. 1) Each row of X contains the vector xTi , yi. The parameter vector is a, σ it includes the
set of line/plane parameters plus σ. The goal is to minimize:

This is a robust estimation problem, but we have added σ (the robust scale value).

Ex. 2) X contains the set of corresponding image points xi ↔ x′i. The goal is to minimize:

4.4. NON-LINEAR ESTIMATION 35

In other words, this is the minimization of the geometric error in a single image.

The solution techniques used here are all iterative. The iterations of the parameter vector
estimates will be denoted at. We reserve subscripting, such as in ak, al, to denote components
of vectors or matrices.

36 CHAPTER 4. IMAGE FORMATION II: CALIBRATION

Chapter 5

Filtering and Edge detection

The word filter comes from frequency-domain processing, where “filtering” refers to the process
of accepting or rejecting certain frequency components

We distinguish between low-pass and high-pass filtering:
– A low-pass filter smooths an image (retains low-frequency components)
– A high-pass filter retains the contours (also called edges) of an image (high frequency)

5.1 Noise reduction

We can have in an image different kinds of noises:
– Salt and pepper noise: random occurrences of black and white pixels
– Impulse noise: random occurrences of white pixels
– Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

37

38 CHAPTER 5. FILTERING AND EDGE DETECTION

5.1.1 1D Filtering for Gaussian Noise

How could we reduce the noise to try to recover the “real image”?

Moving Average (Smoothing) This filter replaces each pixel with an average of all the
values in its neighborhood. The assumptions to make are:
– Expect pixels to be like their neighbors
– Expect noise process to be independent from pixel to pixel.

A moving average in 1D is the following:

We can implement also a weighted moving average filter, adding weights to the moving average.
For example, the previous filter with weights [1, 1, 1, 1, 1]/5 will become:

We can also have non-uniform weights, like [1, 4, 6, 4, 1]/16:

The operation performed by the filter is called convolution. Let’s see an: example of convolu-
tion of two sequences (or ”signals”):

5.1. NOISE REDUCTION 39

→ One of the sequences is flipped (right to left) before sliding over the other

The notation used is : a ? b. This operation has some nice properties like linearity, associa-
tivity, commutativity, etc...

5.1.2 2D Filtering - Correlation and convolution

Let’s introduce another operation comparing it to the convolution:

– Correlation:

(w?̂f)(x, y) =
a∑

s=−a

b∑

t=−b
w(s, t)f(x+ s; y + t)

– Convolution:

(w ? f)(x, y) =

a∑

s=−a

b∑

t=−b
w(s, t)f(x− s; y − t)

For a kernel of size m × n, we assume that m = 2a + 1 and n = 2b + 1, where a and b are
nonnegative integers. This means that our focus is on kernels of odd size in both coordinate
directions.

So, seeing what a convolution is, we can say that filtering an image is replace each pixel with
a linear combination of its neighbors.

The filter w is also called “kernel” or “mask”. It allows to have different weights depending on
neighboring pixel’s relative position. In the following image is shown the filtering process via
the kernel coefficients:

40 CHAPTER 5. FILTERING AND EDGE DETECTION

5.1. NOISE REDUCTION 41

Sometimes, part of w lies outside f , so the summation is undefined in that area. A solution is
the zero padding: to use a pad function f with enough zeros on either side. In general, if the
kernel is of size 1 ×m, we need (m − 1) = 2 zeros on either side of f . Let’s see an example in
1D:

As we saw before, in the convolution (not in the correlation, we don’t multiply the correspondent
coefficients. To visualize it we can say that in convolution we pre-rotate the kernel and
then repeat the sliding sum of products. So, the convolution of a function with an impulse
copies the function to the location of the impulse. It is notable to see that correlation and
convolution yield the same result if the kernel values are symmetric about the center.

In the following image we can compare correlation and convolution processes:

42 CHAPTER 5. FILTERING AND EDGE DETECTION

Moving Average in 2D We can now see how the moving average filtering works in 2D:

With this kind of filter we can smooth images:

5.1. NOISE REDUCTION 43

Exercise You are given the following kernel and image:

1. Encircle the area when the kernel is centered at point (2, 3) (2nd row, 3rd col) of the image
shown above. Show specific values of w and f .

2. Compute the convolution w ? f using the minimum zero padding needed. Show the detail
of your computations when the kernel is centered on point (2, 3) of f ; and the show the
final full convolution result.

3. Repeat 2, but for correlation w?̂f

5.1.3 2D Filtering - Separable Filter Kernels

A 2D function G(x, y) is said to be separable if it can be written as the product of two 1D
functions, G1(x) and G2(y), that is:

G(x, y) = G1(x)G2(y)

A spatial filter kernel is a matrix, so a separable kernel of size m × n can be expressed as the
outer product of two vectors w1 and w2 (vectors of size respectively m× 1 and n× 1:

Separable filter kernel: w = w1 · wT2 → (rank 1)

It is useful to note how convolution behaves with separable kernels (w = w1w2):

w ? f = (w1 ? w2) ? f = (w1 ? f) ? w2

But why separable filters are convenient? For an image of size M ×N and a kernel size m×n
the filtering process requires M ·N ·m · n multiplications and additions. If for the kernel holds

44 CHAPTER 5. FILTERING AND EDGE DETECTION

separability, the filtering process requires only M ·N · (m+ n) multiplications and additions, so

we have a reduction factor of
m · n
m+ n

.1

But how to find the separable filters?
1) Find any nonzero element in the kernel and let E denote its value.
2) Form vectors c and r equal, respectively, to the column and row in the kernel containing

the element found in step 1.

3) Let w1 = c and wT2 =
r

E
.

5.1.4 Lowpass Filter Kernels

Box Filter In one dimension, the box filter has kernel:

box1D(x) =

{
1/(2a) if − a ≤ x ≤ a
0 if |x| > a.

The definition just given can easily be extended to the two-dimensional case imposing a separa-
bility condition:

box2D(x, y) = box1D(x) box1D(y)

The graph of those kernel is shown in the following figure:

The box filter is a lowpass filter. This is easy to verify by analyzing the filter in the frequency
domain. In fact, the transfer function of the filter box2D is the two-dimensional sinc function.
Thus, in the frequency domain, filtering (in the spatial domain) with a box filter corresponds to
multiplying the Fourier transform by the sinc function; this clearly dampens high frequencies.

1It’s a lot, if we think about an 11× 11 kernel the factor is of 5.2!!!

5.1. NOISE REDUCTION 45

Gaussian Filter In one dimension the kernel w(x) = Gσ(x) of the continuous-domain gaus-
sian filter is given by the gaussian function

Gσ(x) = K e
−
x2

2σ2

where σ is a constant, called the variance of the function. In two dimensions the kernel is
defined by (note how the definition makes this filter separable too):

Gσ(x, y) = K e
−
x2 + y2

2σ2

So:

w(s, t) = K e
−
s2 + t2

2σ2

A quick analysis in the continuous domain shows that the gaussian filter is a lowpass filter.
We just observe that the Fourier transform of a gaussian distribution is also a gaussian. In
other words, the transfer function is gaussian, so that high frequencies in the filtered signal are
damped by a factor that grows exponentially with the frequency. The transfer function assumes
only nonnegative values, and the rotational symmetry of the gaussian shows that the filter is
isotropic.

46 CHAPTER 5. FILTERING AND EDGE DETECTION

Exercise Solve the following questions:
1) Show that the Gaussian kernel, G(s; t) is separable.

2) Because G is separable and circularly symmetric, it can be expressed in the form
G = w1w

T
1 . Assume that the following kernel form is used and that the function is sampled to

yield an m×m kernel. What is w1 in this case?

G(r) = K e
−
r2

2σ2

Here there is a comparison between the two lowpass filter shown:

So, Gaussian kernels are separable. But they have also another interesting property: the prod-
uct and convolution of two Gaussian functions are Gaussian functions too.

What parameters matter in a Gaussian filter?
– The size of the kernel (NB: a Gaussian function has infinite support, but discrete filters use
finite kernels)

- The variance (determines extent of smoothing)

5.2. EDGE DETECTION 47

5.1.5 Non-linear filtering

There is a problem with linear smoothing filters: they do not alleviate salt and pepper
noise! How we can do it?

Median filter It is a non-linear filter that removes spikes: is good for impulse and salt &
pepper noise:

Here is presented the kernel of the median filter:

The advantage of the Median filter is that preserves sharp transitions, but the drawback is that
it removes small brightness variations.

5.2 Edge detection

5.2.1 1D Sharpening (Highpass) Spatial Filters

Highpass filters are used to perform Edge Detection on the image processed. The ultimate goal
of the edge detection is to have an “idealized line drawing”. Edge detection is fundamental in
computer vision because edge contours in the image correspond to important scene contours.

An edge is a place of rapid change in the image intensity function:

48 CHAPTER 5. FILTERING AND EDGE DETECTION

The derivatives of a digital function are defined in terms of differences.

First derivative:
– Must be zero in areas of constant intensity.
– Must be nonzero at the onset of an intensity step or ramp.
– Must be nonzero along intensity ramps.

Second derivative:
– Must be zero in areas of constant intensity.
– Must be nonzero at the onset and end of an intensity step or ramp.
– Must be zero along intensity ramps.

5.2. EDGE DETECTION 49

To implement the above as a convolution, what would be the associated filter?

Partial derivatives filter This filter performs the derivate along one axis:

Alternative Finite-difference filters We can have different kernels that performs this kind
of operation:

50 CHAPTER 5. FILTERING AND EDGE DETECTION

Noise Smoothing Let’s consider a single row or column of an image. We know that there
will be a certain amount of noise, that we can visualize by plotting intensity as a function of
position:

As we can notice, from that kind of derivate one cannot understand where is the edge. The
solution is to smooth the image first and then perform the derivation (in the following image
the single line of the image f is convoluted by a 1D Gaussian filter h):

An alternative is to combine derivative and smoothing filter in a unique filter, using the differ-
entiation property of the convolution:

∂

∂x
(h ? f) =

(
∂

∂x
h

)
? f

The result is the following:

5.2. EDGE DETECTION 51

Derivative of Gaussian filter We can then introduce this effective derivative filters (one for
axis direction):

Laplacian of Gaussian We can go farther and use the second derivative of Gaussian filter:

Remind: the Laplacian operator is ∇2f = ∂2 f
∂x2

+ ∂2 f
∂y2

5.2.2 2D Sharpening Spatial Filters

Image gradient To perform derivation in 2D image gradient-based filters could be useful:

52 CHAPTER 5. FILTERING AND EDGE DETECTION

Since we defined the previous filters in 1D, we can now easily extend them in 2D:

Summary on (linear) filters

5.3 Canny edge-detection algorithm

The Canny edge-detection algorithm (1986) computes the gradient of a smoothed image in
both directions. It discards pixels whose gradient magnitude is below a certain threshold and
implements a non-maximal suppression: it identifies local maxima along gradient direction:

5.3. CANNY EDGE-DETECTION ALGORITHM 53

What is the “Non-maxima suppression”? Due to the multiple response, edge magnitude M(x, y)
may contain wide ridges around the local maxima. Non-maxima suppression removes the non-
maxima pixels preserving the connectivity of the contours.

Algorithm 1: Non-maxima suppression:
1. From each position (x, y), step in the two directions perpendicular to edge orientation Θ(x, y).
2. Denote the inital pixel (x, y) by C, the two neighbouring pixels in the perpendicular directions
by A and B.
3. If the M(A) > M(C) or M(B) > M(C), discard the pixel (x, y) by setting M(x, y) = 0.

In the following image is illustrated the non-maxima suppression. Pixels A and B are deleted
because M(C) > M(A) and M(C) > M(B). Pixel C is not deleted:

In the following image is illustrated the process of thinning wide contours in edge magnitude
images by non-maxima suppression. The intensity profile along the indicated line is shown
resized for better visibility:

Hysteresis thresholding The output of the non-maxima suppression still contains noisy
local maxima. The contrast (edge strength) may be different in different points of the contour.
So, a careful thresholding of M(x, y) is needed to remove these weak edges while preserving the
connectivity of the contours.

Hysteresis thresholding receives the output of the non-maxima suppression, MNMS(x, y). The
algorithm uses 2 thresholds, Thigh and Tlow:
– A pixel (x, y) is called strong if MNMS(x, y) > Thigh.
– A pixel (x, y) is called weak if MNMS(x, y) ≤ Tlow.
– All other pixels are called candidate pixels.

Algorithm 2: Hysteresis thresholding
1. In each position of (x, y), discard the pixel (x, y) if it is weak; output the pixel if it is strong.

54 CHAPTER 5. FILTERING AND EDGE DETECTION

2. If the pixel is a candidate, follow the chain of connected local maxima in both directions
along the edge, as long as MNMS > Tlow.
3. If the starting candidate pixel (x, y) is connected to a strong pixel, output this candidate
pixel; otherwise, do not output the candidate pixel.

In the following image is illustrated the hysteresis thresholding. The candidate edges C1 and
C2 are output, the candidate edges C3 and C4 are not:

We can see here some examples of edge localisation with different hysteresis thresholds:

Chapter 6

Feature Point Detection

6.1 Filters for Feature detection and Point-feature extraction

Feature Point Detection and Matching

• In the last lecture, we used filters to reduce noise or enhance contours

• However, filters can also be used to detect "features"
• Goal: reduce amount of data to process in later stages, discard

redundancy to preserve only what is useful (leads to lower bandwidth
and memory storage)
• Edge detection (we have seen this already; edges can enable line

or shape detection)
• Template matching
• Keypoint detection

Vincent Frémont Vision for Robotics 2 / 55

Filters for Feature Detection

Feature Point Detection and Matching

• Find locations in an image that are similar to a template
• If we look at filters as templates, we can use correlation (like convolution but

without flipping the filter) to detect these locations

Vincent Frémont Vision for Robotics 4 / 55

Filters for Template Matching

55

56 CHAPTER 6. FEATURE POINT DETECTION
Feature Point Detection and Matching

• Smoothing filter:
• has positive values
• sums to 1 → preserve brightness of constant regions
• removes "high-frequency" components: "low-pass" filter

• Derivative filter:
• has opposite signs used to get high response in regions of high contrast
• sums to 0 → no response in constant regions
• highlights "high-frequency" components: "high-pass" filter

• Filters as templates:
• Highest response for regions that "look similar to the filter"

Vincent Frémont Vision for Robotics 5 / 55

Summary of Filters

Feature Point Detection and Matching

• What if the template is not identical to the object we want to detect?
• Template Matching will only work if scale, orientation, illumination, and, in

general, the appearance of the template and the object to detect are very
similar. What about the pixels in template background (object-background
problem)?

Vincent Frémont Vision for Robotics 6 / 55

Template Matching

Feature Point Detection and Matching

• Consider images H and F as vectors, their correlation is:

〈H,F 〉 = ‖H‖.‖F‖. cos θ

• In Normalized Cross Correlation (NCC), we consider the unit vectors of H and
F , hence we measure their similarity based on the angle θ. If H and F are
identical, then NCC = 1.

cos θ =
〈H,F 〉
‖H‖.‖F‖

=

∑k
u=−k

∑k
v=−kH(u, v)F (u, v)

√∑k
u=−k

∑k
v=−kH(u, v)2

√∑k
u=−k

∑k
v=−k F (u, v)2

Vincent Frémont Vision for Robotics 7 / 55

Correlation as Scalar Product

6.1. FILTERS FOR FEATURE DETECTION AND POINT-FEATURE EXTRACTION 57
Feature Point Detection and Matching

• Sum of Absolute Differences (SAD) (used in optical mice)

SAD =

k∑

u=−k

k∑

v=−k
|H(u, v)− F (u, v)|

• Sum of Squared Differences (SSD)

SSD =

k∑

u=−k

k∑

v=−k
(H(u, v)− F (u, v))2

• Normalized Cross Correlation (NCC): takes values between -1 and +1 (+1 =
identical)

NCC =

∑k
u=−k

∑k
v=−kH(u, v)F (u, v)

√∑k
u=−k

∑k
v=−kH(u, v)2

√∑k
u=−k

∑k
v=−k F (u, v)2

Vincent Frémont Vision for Robotics 8 / 55

Other Similarity Measures

Feature Point Detection and Matching

To account for the difference in mean of the two images (typically caused by
illumination changes), we subtract the mean value of each image:

• Zero-mean Sum of Absolute Differences (ZSAD)

ZSAD =
∑k
u=−k

∑k
v=−k |(H(u, v)− µH)− (F (u, v)− µF)|

• Zero-mean Sum of Squared Differences (ZSSD)

SSD =
∑k
u=−k

∑k
v=−k ((H(u, v)− µH)− (F (u, v)− µF))2

• Zero-mean Normalized Cross Correlation (ZNCC)

ZNCC =
∑k

u=−k

∑k
v=−k(H(u,v)−µH)(F (u,v)−µF)√∑k

u=−k

∑k
v=−k

(H(u,v)−µH)2
√∑k

u=−k

∑k
v=−k

(F (u,v)−µF)2

ZNCC is invariant to affine intensity changes!

µH =

∑k
u=−k

∑k
v=−kH(u, v)

(2N + 1)2
, µF =

∑k
u=−k

∑k
v=−k F (u, v)

(2N + 1)2

Vincent Frémont Vision for Robotics 9 / 55

Zero-mean SAD, SSD, NCC

Feature Point Detection and Matching

• Maps an image patch to a bit string:
• if a pixel is greater than the center pixel its corresponding bit is set to 1,

else to 0
• For a w × w window the string will be w2 − 1 bits long

• The two bit strings are compared using the Hamming distance, which is the
number of bits that are different. This can be computed by counting the
number of 1s in the Exclusive-OR (XOR) of the two bit strings

Advantages
• More robust to object-background problem
• No square roots or divisions are required,

thus very efficient to implement,
especially on FPGA

• Intensities are considered relative to the center
pixel of the patch making it invariant to monotonic
intensity changes

Vincent Frémont Vision for Robotics 10 / 55

Census Transform

58 CHAPTER 6. FEATURE POINT DETECTION
Feature Point Detection and Matching

Recall the Visual-Odometry flow chart:

Vincent Frémont Vision for Robotics 11 / 55

What do we need point features for?

Feature Point Detection and Matching

Keypoint extraction is the key ingredient of motion estimation!

Vincent Frémont Vision for Robotics 12 / 55

Feature Point Detection and Matching

• Panorama stitching
• Object recognition
• 3D reconstruction
• Place recognition
• Indexing and database retrieval (e.g., Google Images or http://tineye.com)

Vincent Frémont Vision for Robotics 13 / 55

Point Features are also used for:

6.1. FILTERS FOR FEATURE DETECTION AND POINT-FEATURE EXTRACTION 59
Feature Point Detection and Matching

• We need to align images
• How would you do it?

Vincent Frémont Vision for Robotics 18 / 55

Local features and alignment
Example: panorama stitching

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 20 / 55

• Detect point features in both images
• Find corresponding pairs
• Use these pairs to align the images

Feature Point Detection and Matching

• Problem 1:
• Detect the same points independently in both images

No chance to match!

We need a repeatable feature detector

Vincent Frémont Vision for Robotics 22 / 55

Matching with Features

60 CHAPTER 6. FEATURE POINT DETECTION
Feature Point Detection and Matching

• Problem 2:
• For each point, identify its correct correspondence in the other image(s)

We need a reliable and distinctive feature descriptor
that is robust to geometric and illumination changes

Vincent Frémont Vision for Robotics 23 / 55

Feature Point Detection and Matching

• Rotation
• Scale (i.e., zoom)
• View point (i.e, perspective changes)

Vincent Frémont Vision for Robotics 24 / 55

Geometric changes

Feature Point Detection and Matching

Typically, small illumination changes are modeled with an affine transformation (so
called affine illumination changes):

I ′(x, y) = αI(x, y) + β

Vincent Frémont Vision for Robotics 25 / 55

Illumination changes

6.1. FILTERS FOR FEATURE DETECTION AND POINT-FEATURE EXTRACTION 61
Feature Point Detection and Matching

Subset of local feature types designed to be invariant to common geometric and
photometric transformations.

Basic steps:
• Detect distinctive interest points
• Extract invariant descriptors

Vincent Frémont Vision for Robotics 26 / 55

Invariant local features

Feature Point Detection and Matching

• What points are distinctive (i.e., features, keypoints, salient
points), such that they are repeatable? (i.e., can be re-detected
from other views)

• How to describe a local region?
• How to establish correspondences, i.e., compute matches?

Vincent Frémont Vision for Robotics 27 / 55

Main questions

Feature Point Detection and Matching

• Consider the image pair below with extracted patches
• Notice how some patches can be localized or matched with higher accuracy

than others

Vincent Frémont Vision for Robotics 28 / 55

What is a distinctive feature?

62 CHAPTER 6. FEATURE POINT DETECTION
Feature Point Detection and Matching

• A corner is defined as the intersection of one or more edges
• A corner has high localization accuracy
• It’s less distinctive than a blob
• E.g., Harris, Shi-Tomasi, SUSAN, FAST

• A blob is any other image pattern, which is not a corner, that
differs significantly from its neighbors in intensity and texture
(e.g., a connected region of pixels with similar color, a circle, etc.)
• Has less localization accuracy than a corner
• Blob detectors are better for place recognition
• It’s more distinctive than a corner
• E.g., MSER, LOG, DOG (SIFT), SURF,

CenSurE

Vincent Frémont Vision for Robotics 29 / 55

Feature Points: Corners vs Blob Detectors

Feature Point Detection and Matching

• Key observation: in the region around a corner, image gradient has
two or more dominant directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." , 1988 Proceedings of the 4th Alvey
Vision Conference: pages 147–151.

Vincent Frémont Vision for Robotics 30 / 55

Corner detection

Feature Point Detection and Matching

• How do we identify corners?
• We can easily recognize the point by looking through a small window
• Shifting a window in any direction should give a large change in intensity (e.g.,

in SSD) in at least 2 directions

H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, PhD thesis,
Chapter 5, Stanford University, Computer Science Department, 1980.

Vincent Frémont Vision for Robotics 31 / 55

The Moravec Corner detector (1980)

6.1. FILTERS FOR FEATURE DETECTION AND POINT-FEATURE EXTRACTION 63
Feature Point Detection and Matching

H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, PhD thesis,
Chapter 5, Stanford University, Computer Science Department, 1980.

Vincent Frémont Vision for Robotics 32 / 55

Feature Point Detection and Matching

• It implements the Moravec corner detector without having to physically shift
the window but rather by just looking at the patch itself, by using differential
calculus.

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.? , 1988 Proceedings of the 4th Alvey
Vision Conference: pages 147-151.

Vincent Frémont Vision for Robotics 33 / 55

The Harris Corner detector (1988)

Feature Point Detection and Matching

• Consider the reference patch centered at (x, y) and the shifted window centered at
(x+ ∆x, y + ∆y). The patch has size P .

• The Sum of Squared Differences between them is:

SSD(∆x,∆y) =
∑

x,y∈P
(I(x, y)− I(x+ ∆x, y + ∆y))2

• Let Ix =
∂I(x,y)
∂x

and Iy =
∂I(x,y)
∂y

. Approximating with a 1st order Taylor expansion:

I(x+ ∆x, y + ∆y) ≈ I(x, y) + Ix(x, y)∆x+ Iy(x, y)∆y

• This produces the approximation

SSD(∆x,∆y) ≈
∑

x,y∈P
(Ix(x, y)∆x+ Iy(x, y)∆y)2

This is a simple quadratic function in two variables (∆x,∆y)

Vincent Frémont Vision for Robotics 34 / 55

How do we implement this?

64 CHAPTER 6. FEATURE POINT DETECTION
Feature Point Detection and Matching

SSD(∆x,∆y) =
∑

x,y∈P
(I(x, y)− I(x+ ∆x, y + ∆y))2

• This can be written in a matrix form as

SSD(∆x,∆y) ≈
∑[

∆x ∆y
] [I2x IxIy

IxIy I2y

] [
∆x
∆y

]

⇒ SSD(∆x,∆y) ≈
∑[

∆x ∆y
]
M
[

∆x
∆y

]

With

M =
∑

x,y∈P

[
I2x IxIy
IxIy I2y

]
=

[∑
I2x

∑
IxIy∑

IxIy
∑
I2y

]

Pixel-wise products in the autocorrelation matrix

Vincent Frémont Vision for Robotics 35 / 55

Feature Point Detection and Matching

• First, consider an edge or a flat region.

• We can conclude that if either λ is close to 0, then this is not a corner.
• Now, let’s consider an axis-aligned corner:

• This means dominant gradient directions are at 45 degrees with x and y axes
• What if we have a corner that is not aligned with the image axes?

Vincent Frémont Vision for Robotics 36 / 55

What does this matrix reveal?

Feature Point Detection and Matching

Since M is symmetric, it can always be decomposed into M = R−1

[
λ1 0
0 λ2

]
R

• We can visualize
[

∆x ∆y
]
M
[

∆x
∆y

]
= const as an ellipse with axis lengths

determined by the eigenvalues and the two axes’ orientations determined by R
(i.e., the eigenvectors of M)

• The two eigenvectors identify the directions of largest and smallest changes of
SSD

Vincent Frémont Vision for Robotics 37 / 55

General Case

6.1. FILTERS FOR FEATURE DETECTION AND POINT-FEATURE EXTRACTION 65
Feature Point Detection and Matching

Eigenvalue/eigenvector review
• You can easily proof that λ1, λ2 are the eigenvalues of M
• The eigenvectors and eigenvalues of a matrix A are the vectors x and scalars λ that

satisfy:
Ax = λx

• The scalar λ is the eigenvalue corresponding to x

• The eigenvalues are found by solving det (A− λI)

• In our case, A = M is a 2× 2 matrix, so we have det

[
m11 − λ m12

m21 m22 − λ

]
= 0

• The solution is: λ1,2 = 1
2

[
(m11 +m22)±

√
4m12m21 + (m11 −m22)2

]
= 0

• Once you know λ, you find the two eigenvectors x (i.e. the two columns of R) by
solving: [

m11 − λ m12

m21 m22 − λ

] [
x
y

]
=

[
0
0

]

Vincent Frémont Vision for Robotics 38 / 55

How to compute λ1, λ2, R from M

Feature Point Detection and Matching

NB: the ellipses here are plot proportionally to the eigenvalues and not as iso-SSD ellipses
as explained before. So small ellipses here denote a flat region, and big ones a corner.

Vincent Frémont Vision for Robotics 40 / 55

Visualization of 2nd moment matrices

Feature Point Detection and Matching

• Classification of image points using eigenvalues of M
• A corner can then be identified by checking whether the minimum of the two

eigenvalues of M is larger than a certain user-defined threshold ⇒ R = min(λ1, λ2) > ε

• R is called "cornerness function"
• The corner detector using this criterion is called "Shi-Tomasi" detector

J. Shi and C. Tomasi (June 1994). "Good Features to Track,". 9th IEEE Conference on Computer Vision
and Pattern Recognition

Vincent Frémont Vision for Robotics 41 / 55

Interpreting the eigenvalues

66 CHAPTER 6. FEATURE POINT DETECTION
Feature Point Detection and Matching

• Computation of λ1 and λ2 is expensive ⇒ Harris & Stephens suggested using a
different cornerness function:

R = λ1λ2 − k(λ1 + λ2)2 = det(M)− k.trace2(M)

• k is a magic number in the range (0.04 to 0.15)

Vincent Frémont Vision for Robotics 42 / 55

Feature Point Detection and Matching

1 Compute derivatives in x and y directions (Ix, Iy) e.g. with Sobel filter

2 Compute I2x, I2y , IxIy
3 Convolve I2x, I2y , IxIy with a box filter to get

∑
I2x,
∑
I2y ,
∑
IxIy, which are

the entries of the matrix M (optionally use a Gaussian filter instead of a box
filter to avoid aliasing and give more "weight" to the central pixels)

4 Compute Harris Corner Measure R (according to Shi-Tomasi or Harris)

5 Find points with large corner response (R > ε)

6 Take the points of local maxima of R

Vincent Frémont Vision for Robotics 43 / 55

Harris Corner Detector

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 44 / 55

6.1. FILTERS FOR FEATURE DETECTION AND POINT-FEATURE EXTRACTION 67
Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 45 / 55

Harris vs Shi-Tomasi

Feature Point Detection and Matching

Compute Corner Measure R

Vincent Frémont Vision for Robotics 47 / 55

Harris Detector: Workflow

Feature Point Detection and Matching

Find points with large corner
response: R > ε

Vincent Frémont Vision for Robotics 48 / 55

Take only the points of local
maxima of thresholded R

68 CHAPTER 6. FEATURE POINT DETECTION
Feature Point Detection and Matching

How does the size of the Harris detector affect the performance?

Repeatability:
• How does the Harris detector behave to common image

transformations?
• Can it re-detect the same image patches (Harris corners) when the

image exhibits changes in
• Rotation,
• View-point,
• Scale (zoom),
• Illumination ?

• Solution: Identify properties of detector & adapt accordingly

Vincent Frémont Vision for Robotics 51 / 55

Harris Detector: Some Properties

Feature Point Detection and Matching

 Rotation Invariance:

Ellipse rotates but its shape (i.e., eigenvalues) remains the same

Corner response R is invariant to image rotation

Vincent Frémont Vision for Robotics 52 / 55

Feature Point Detection and Matching

But: non-invariant to image scale!

Vincent Frémont Vision for Robotics 53 / 55

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 69
Feature Point Detection and Matching

Quality of Harris detector for different scale changes

Vincent Frémont Vision for Robotics 54 / 55

Feature Point Detection and Matching

• Filters as templates
• Correlation as a scalar product
• Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD),

Census Transform
• Point feature detection

• Properties and invariance to transformations
• Challenges: rotation, scale, view-point, and illumination changes

• Extraction
• Moravec
• Harris and Shi-Tomasi: Rotation Invariance

Vincent Frémont Vision for Robotics 55 / 55

Summary (things to remember)

6.2 Automatic Scale Selection, Detectors and Descriptors

Feature Point Detection and Matching

• How can we match image patches corresponding to the same
feature but belonging to images taken at different scales?
• Possible solution: rescale the patch!

Vincent Frémont Vision for Robotics 3 / 67

Scale changes

70 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

• Scale search is time consuming (needs to be done individually for
all patches in one image)
• Complexity would be (NM)2 (assuming that we have N features

per image and M scale levels for each image)
• Possible solution: assign each feature its own "scale" (i.e., size).

• What’s the optimal scale (i.e., size) of the patch?

Vincent Frémont Vision for Robotics 6 / 67

Feature Point Detection and Matching

• Solution:
• Design a function on the image patch, which is "scale invariant"

(i.e., which has the same value for corresponding regions, even if
they are at different scales)

• For a point in one image, we can consider it as a function of region
size (patch width)

Vincent Frémont Vision for Robotics 7 / 67

Automatic Scale Selection

Feature Point Detection and Matching

• Common approach:
• Take a local maximum or minima of this function
• Observation: region size, for which the maximum or minima is

achieved, should be invariant to image scale.

Important: this scale invariant region size is found in each image independently!

Vincent Frémont Vision for Robotics 8 / 67

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 71

Feature Point Detection and Matching

• Function responses for increasing scale (scale signature)

Vincent Frémont Vision for Robotics 9 / 67

Vincent Frémont Vision for Robotics 13 / 67

• When the right scale is found, the patch must be normalized

Feature Point Detection and Matching

• A "good" function for scale detection should have a single & sharp
peak

• What if there are multiple peaks?
• Sharp, local intensity changes are good regions to monitor in

order to identify the scale
⇒ Blobs and corners are the ideal locations!

Vincent Frémont Vision for Robotics 16 / 67

72 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

• Function for determining scale: convolve image with kernel to identify sharp
intensity discontinuities

f = Kernel ? Image
• It has been shown that the Laplacian of Gaussian kernel is optimal under

certain assumptions [Lindeberg?94]:

LoG = ∇2G(x, y) =
∂2G(x, y)

∂x2
+

∂2G(x, y)

∂y2

• Correct scale is found as local maxima or minima across consecutive smoothed
images

Lindeberg, Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied
Statistics, 1994

Vincent Frémont Vision for Robotics 17 / 67

Feature Point Detection and Matching

• Function for determining scale: convolve image with kernel to identify sharp
intensity discontinuities

f = Kernel ? Image
• It has been shown that the Laplacian of Gaussian kernel is optimal under

certain assumptions [Lindeberg?94]:

LoG = ∇2G(x, y) =
∂2G(x, y)

∂x2
+

∂2G(x, y)

∂y2

• Correct scale is found as local maxima or minima across consecutive smoothed
images

Lindeberg, Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied
Statistics, 1994

Vincent Frémont Vision for Robotics 18 / 67

Feature Point Detection and Matching

• What points are distinctive (i.e., features, keypoints, salient
points), such that they are repeatable? (i.e., can be re-detected
from other views)

• How to describe a local region?
• How to establish correspondences, i.e., compute matches?

Vincent Frémont Vision for Robotics 19 / 67

Main questions

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 73

Feature Point Detection and Matching

• We know how to detect points
• Next question:

How to describe them for matching?

• Simplest descriptor: intensity values within a squared patch
• Alternative: Census Transform or Histograms of Oriented Gradients (like in

SIFT, see later)
• Then, descriptor matching can be done using Hamming Distance (Census) or

(Z)SSD, (Z)SAD, or (Z)NCC

Vincent Frémont Vision for Robotics 20 / 67

Feature descriptors

Feature Point Detection and Matching

• We’d like to find the same features regardless of the transformation
(rotation, scale, view point, and illumination)
• Most feature methods are designed to be invariant to

• 2D translation,
• 2D rotation,
• Scale

• Some of them can also handle
• Small view-point invariance (e.g., SIFT works up to about 60

degrees)
• Linear illumination changes

Vincent Frémont Vision for Robotics 21 / 67

Feature Point Detection and Matching

Step 1: Re-scaling and De-rotation
• Find correct scale using LoG operator
• Rescale the patch to a default size (e.g., 8× 8 pixels)
• Find local orientation

• Dominant direction of gradient for the image patch (e.g., Harris
eigenvectors)

Vincent Frémont Vision for Robotics 22 / 67

How to achieve invariance

74 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

• Start with an "empty" canonical patch (all pixels set to 0)
• For each pixel (x, y) in the empty patch, apply the warping function W(x, y) to

compute the corresponding position in the detected image. It will be in
floating point and will fall between the image pixels.

• Interpolate the intensity values of the 4 closest pixels in the detected image:
• use nearest neighbor
• or bilinear interpolation

Vincent Frémont Vision for Robotics 23 / 67

How to warp a patch?

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 24 / 67

Example 1: Rotational warping

Feature Point Detection and Matching

• It is an extension of linear interpolation for interpolating functions of two
variables (e.g., x and y) on a rectilinear 2D grid.

• The key idea is to perform linear interpolation first in one direction, and then
again in the other direction. Although each step is linear in the sampled values
and in the position, the interpolation as a whole is not linear but rather
quadratic in the sample location.

In this geometric visualization, the value at the black spot is the sum of the value at each colored spot
multiplied by the area of the rectangle of the same color.

Vincent Frémont Vision for Robotics 25 / 67

Bilinear Interpolation

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 75

Feature Point Detection and Matching

• The second moment matrix M can be used to identify the two directions of
fastest and slowest change of intensity around the feature.

• Out of these two directions, an elliptic patch is extracted at the scale
computed by with the LoG operator.

• The region inside the ellipse is normalized to a circular one

Vincent Frémont Vision for Robotics 26 / 67

Example 2: Affine Warping
Affine warping (to achieve slight view-point invariance)

Feature Point Detection and Matching

Example: de-rotation, re-scaling, and affine un-warping

Vincent Frémont Vision for Robotics 27 / 67

How to achieve invariance

Feature Point Detection and Matching

• Disadvantage of patches as descriptors:
• If not warped, very small errors in rotation, scale, and view-point

will affect matching score significantly
• Computationally expensive (need to unwarp every patch)

• Better solution nowadays: build descriptors from Histograms of
Oriented Gradients (HOGs)

Vincent Frémont Vision for Robotics 28 / 67

Feature descriptors

76 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

• Compute a histogram of orientations of intensity gradients
• Peaks in histogram: dominant orientations
• Keypoint orientation = histogram peak

• If there are multiple candidate peaks, construct a different keypoint
for each such orientation

• Rotate patch according to this angle
• This puts the patches into a canonical orientation

Vincent Frémont Vision for Robotics 29 / 67

HOG descriptor (Histogram of Oriented Gradients)

Feature Point Detection and Matching

• Rotate the window to standard orientation
• Scale the window size based on the scale at which the point was

found

Vincent Frémont Vision for Robotics 30 / 67

Rotation and Scale Normalization

Feature Point Detection and Matching

• Scale Invariant Feature Transform
• Invented by David Lowe [IJCV, 2004] (now at Google)
• Descriptor computation:

• Divide patch into 4× 4 sub-patches = 16 cells
• Compute HOG (8 bins, i.e., 8 directions) for all pixels inside each

sub-patch
• Concatenates all HOGs into a single 1D vector:

• Resulting SIFT descriptor: 4× 4× 8 = 128 values
• Descriptor Matching: SSD (i.e., Euclidean-distance)

Vincent Frémont Vision for Robotics 31 / 67

SIFT descriptor

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 77

Feature Point Detection and Matching

• The descriptor vector v is then normalized such that its l2 norm is
1:

v̄ =
v√∑n
i v

2
i

• This guarantees that the descriptor is invariant to linear
illumination changes (the descriptor is already invariant to additive
illumination because it is based on gradients).

Vincent Frémont Vision for Robotics 32 / 67

Intensity Normalization

Feature Point Detection and Matching

• Can handle changes in viewpoint (up to 60 degree out-of-plane rotation)
• Can handle significant changes in illumination (low to bright scenes)
• Expensive: 10 fps
• Original SIFT code (binary files): http://people.cs.ubc.ca/ lowe/keypoints

Vincent Frémont Vision for Robotics 33 / 67

SIFT matching robustness

Feature Point Detection and Matching

Difference of Gaussian (DoG) kernel instead of Laplacian of Gaussian
(computationally cheaper)

LoG ≈ DoG = Gkσ(x, y)−Gσ(x, y)

Vincent Frémont Vision for Robotics 34 / 67

Scale Invariant Feature Detection

78 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

SIFT keypoints: local extrema (i.e., maxima and minima) in both
space and scale of the DoG images
• Detect maxima and minima of

difference-of-Gaussian in scale space
• Each point is compared to its 8

neighbors in the current image and 9
neighbors each in the scales
above and below

Vincent Frémont Vision for Robotics 35 / 67

SIFT detector (location + scale)

Feature Point Detection and Matching

1 The initial image is incrementally
convolved with Gaussians G(kσ) to
produce images separated by a constant
factor k in scale space, shown stacked
in the left column

1 The initial Gaussian G(kσ)
has σ = 1.6

2 k is chosen such that k = 21/s,
where s is an integer (typically s = 3)

3 For efficiency reasons, when k
reaches 2, the image is downsampled
by a factor of 2 and then the
procedure is repeated again up to 4
or 6 octaves (pyramid levels)

2 Adjacent image scales are then subtracted
to produce the Difference-of-
Gaussian (DoG) images

Vincent Frémont Vision for Robotics 36 / 67

How it is implemented in practice

Feature Point Detection and Matching

67

Scale-space detection: Example

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 79

• SIFT: Scale Invariant Feature Transform [Lowe, IJCV 2004]
• An approach to detect and describe regions of interest in an image.

• NB: SIFT detector = DoG detector
• SIFT features are reasonably invariant to changes in rotation,

scaling, and changes in viewpoint (up to 60deg) and illumination
• Real-time but still slow (10 Hz on an i7 laptop)

• Expensive steps are the scale detection and descriptor extraction

SIFT Features: Summary

Use OpenCV lib in PythonSIFT Demo

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 51 / 67

SIFT repeatability vs. viewpoint angle

Feature Point Detection and Matching

The highest repeatability is obtained when sampling 3 scales per octave

Vincent Frémont Vision for Robotics 52 / 67

SIFT repeatability vs. Scale

80 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

The graph shows that a single orientation histogram (n = 1) is very poor at
discriminating, but the results continue to improve up to a 4x4 array of histograms
with 8 orientations. After that, adding more orientations or a larger descriptor can
actually hurt matching by making the descriptor more sensitive to distortion.

Vincent Frémont Vision for Robotics 53 / 67

Influence of Number of Orientations and Number of
Sub-patches

Feature Point Detection and Matching

• Descriptor: 4× 4× 8 = 128-element 1D vector
• Location (pixel coordinates of the center of the patch): 2D vector
• Scale (i.e., size) of the patch: 1 scalar value
• Orientation (i.e., angle of the patch): 1 scalar value

Vincent Frémont Vision for Robotics 54 / 67

How many parameters are used to define a SIFT feature?

Feature Point Detection and Matching

• Can be simply implemented by returning as best object match the one with
the largest number of correspondences with the template (object to detect)

• 4 or 5 point RANSAC can be used to remove outliers (see next lectures)

Vincent Frémont Vision for Robotics 55 / 67

SIFT for Object recognition

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 81

Feature Point Detection and Matching

• AutoStitch: http://matthewalunbrown.com/autostitch/autostitch.html
• M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Vincent Frémont Vision for Robotics 56 / 67

SIFT for Panorama Stitching

Feature Point Detection and Matching

• What points are distinctive (i.e., features, keypoints, salient
points), such that they are repeatable? (i.e., can be re-detected
from other views)
• How to describe a local region?
• How to establish correspondences, i.e., compute matches?

Vincent Frémont Vision for Robotics 57 / 67

Main questions

• Given a feature in I1, how to find the best match in I2?
1 Define distance function that compares two descriptors ((Z)SSD, SAD,

NCC or Hamming distance for binary descriptors (e.g., Census, BRIEF,
BRISK)

2 Brute-force matching:
1 Test all the features in I2
2 Take the one at min distance

• Issues with closest descriptor: can give good scores to very ambiguous
(bad) matches (curse of dimensionality)

• Better approach: compute ratio of distances to 1st to 2nd closest match
d(f1)/d(f2) < Thres usually 0.8

• d(f1) is the distance of the closest neighbor
• d(f2) is the distance of the 2nd closest neighbor

Feature matching

82 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 61 / 67

SURF [Bay et al., ECCV 2006]

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 62 / 67

FAST detector [Rosten et al., ICCV’05]

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 63 / 67

BRIEF descriptor [Calonder et. al, ECCV 2010]

6.2. AUTOMATIC SCALE SELECTION, DETECTORS AND DESCRIPTORS 83

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 64 / 67

ORB descriptor [Rublee et al., ICCV 2011]

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 65 / 67

BRISK descriptor [Leutenegger, Chli, Siegwart, ICCV 2011]

Feature Point Detection and Matching

Vincent Frémont Vision for Robotics 66 / 67

Recap Table

84 CHAPTER 6. FEATURE POINT DETECTION

Feature Point Detection and Matching

• Similarity metrics: NCC (ZNCC), SSD (ZSSD), SAD (ZSAD), Census Transform
• Point feature detection

• Properties and invariance to transformations
• Challenges: rotation, scale, view-point, and illumination changes

• Extraction
• Moravec
• Harris and Shi-Tomasi: Rotation invariance

• Automatic Scale selection
• Descriptor

• Intensity patches: Canonical representation: how to make them invariant
to transformations: rotation, scale, illumination, and view-point (affine)

• Better solution: Histogram of oriented gradients: SIFT descriptor
• Matching

• (Z)SSD, SAD, NCC, Hamming distance (last one only for binary
descriptors) ratio 1st /2nd closest descriptor

• Depending on the task, you may want to trade off repeatability and robustness
for speed: approximated solutions, combinations of efficient detectors and
descriptors.

• Fast corner detector: FAST;
• Keypoint descriptors faster than SIFT: SURF, BRIEF, ORB, BRISK

Vincent Frémont Vision for Robotics 67 / 67

Summary (things to remember)

Chapter 7

Multiple-view Geometry

7.1 Epipolar Geometry

Multiple View Geometry 1

Given an image point in one view, where is the corresponding point in
the other view?

• A point in one view "generates" an epipolar line in the other view
• The corresponding point lies on this line

Vincent Frémont Vision for Robotics 2 / 78

Epipolar Geometry

Multiple View Geometry 1

Epipolar Constraint
• Reduces correspondence problem to 1D search along an epipolar

line

Vincent Frémont Vision for Robotics 3 / 78

Epipolar line

85

86 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

Epipolar geometry is a consequence of the coplanarity of the camera
centres and scene point

The camera centres, corresponding points and scene point lie in a single
plane, known as the epipolar plane

Vincent Frémont Vision for Robotics 4 / 78

Epipolar geometry continued

Multiple View Geometry 1

• The epipolar line l′ is the image of the ray through x
• The epipole e is the point of intersection of the line joining the

camera centres with the image plane
• this line is the baseline for a stereo rig, and
• the translation vector for a moving camera

• The epipole is the image of the centre of the other camera:
e = PC′, e′ = P′C

Vincent Frémont Vision for Robotics 5 / 78

Nomenclature

Multiple View Geometry 1

As the position of the 3D point X varies, the epipolar planes "rotate"
about the baseline. This family of planes is known as an epipolar
pencil. All epipolar lines intersect at the epipole.
(a pencil is a one parameter family)
Vincent Frémont Vision for Robotics 6 / 78

The Epipolar Pencil

7.1. EPIPOLAR GEOMETRY 87
Multiple View Geometry 1

Epipolar geometry depends only on the relative pose (position and
orientation) and internal parameters of the two cameras, i.e. the
position of the camera centres and image planes. It does not depend on
the scene structure (3D points external to the camera).

Vincent Frémont Vision for Robotics 7 / 78

Epipolar Geometry for Parallel Cameras

Multiple View Geometry 1

Note : epipolar lines are in general not parallel

Vincent Frémont Vision for Robotics 8 / 78

Epipolar Geometry for Converging Cameras

Multiple View Geometry 1

• the map only depends on the cameras P, P′ (not on structure)
• it will be shown that the map is linear and can be written as

l′ = Fx, where F is a 3× 3 matrix called the fundamental matrix

Vincent Frémont Vision for Robotics 9 / 78

Algebraic representation of the epipolar geometry

88 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

Step 1: for a point x in the first im-
age back project a ray with camera
P

Step 2: choose two points p and q on
the ray and project into the second
image with camera P′

Step 3: compute the line through the
two image points using the relation
l′ = p× q

Vincent Frémont Vision for Robotics 10 / 78

Derivation of the algebraic expression l′ = Fx

Multiple View Geometry 1

Step 1 : for a point x in the first im-
age back project a ray with camera
P = K[I|0]

A point x back projects to a ray x(z) that satisfies

Px(z) = K[I|0]x(z) = x

where z is the point’s depth, since

x =




x
y
1


 = K[I|0]




x
y
z
1


 = K




x
y
z




x(z) =

(
zK−1x

1

)

Vincent Frémont Vision for Robotics 11 / 78

Multiple View Geometry 1

Step 2 : choose two points p and
q on the ray and project into the
second image with camera P′

Consider two points on the ray x(z) =

(
zK−1x

1

)

• z = 0 is the camera centre
(

0
1

)

• z =∞ is the point at infinity
(

K−1x
0

)

Project these two points into the second view

P′
(

0
1

)
= K′[R|t]

(
0
1

)
= K′t

P′
(

K−1x
0

)
= K′[R|t]

(
K−1x

0

)
= K′RK−1x

Vincent Frémont Vision for Robotics 12 / 78

7.1. EPIPOLAR GEOMETRY 89
Multiple View Geometry 1

Step 3 : compute the line through the two
image points using the relation l′ = p× q

Compute the line through the points l′ = (K′t)× (K′RK−1x)

Using the identity (Ma)× (Mb) = M−T(a× b) where M−T = (M−1)−T = (MT)−1

l′ = K′−T(t× (RK−1x)) = K′−T[t]×RK−1x with [t]× =




0 −tz ty
tz 0 −tx
−ty tx 0




Important Result

l′ = Fx F = K′−T[t]×RK−1 F = fundamental matrix

Points x and x′ correspond (x↔ x′) then x′Tl′ = 0

Constraint

x′TFx = 0

Vincent Frémont Vision for Robotics 13 / 78

Multiple View Geometry 1

Example I : compute the fundamental matrix for a parallel camera
stereo rig
P = K

[
I | 0

]
P′ = K′

[
R | t

]

K = K′ =



f

f
1


 R = I t =




tx
0
0




F = K′−T[t]×RK−1

=




1/f
1/f

1






0
0 −tx
tx 0






1/f
1/f

1


 =




0
0 −1
1 0




x′TFx =
(
x′ y′ 1

)



0
0 −1
1 0






x
y
1


 = 0

• reduces to y = y′, i.e. raster correspondence (horizontal scan-lines)

Vincent Frémont Vision for Robotics 14 / 78

Multiple View Geometry 1

Important Result
F is a rank 2 matrix

The epipole e is the null-space vector of F, i.e. Fe = 0
In the case of parallel cameras




0
0 −1
1 0






1
0
0


 =




0
0
0




so that

e =




1
0
0




Geometric Interpretation ?

Vincent Frémont Vision for Robotics 15 / 78

90 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

• F is a rank-2 homogeneous matrix with 7 DOF.
• Point correspondence :

if x and x′ are corresponding image points, then x′TFx = 0.
• Epipolar lines :

l′ = Fx is the epipolar line corresponding to x
l = FTx′ is the epipolar line corresponding to x′

• Epipoles :
Fe = 0
FTe′ = 0

• Computation from camera matrices P and P′ :
P = K

[
I | 0

]
, P′ = K′

[
R | t

]
, F = K′−T[t]×RK−1

E = [t]×R is called the essential matrix is the calibrated case.

Vincent Frémont Vision for Robotics 16 / 78

Summary : properties of the fundamental matrix

Multiple View Geometry 1

• If we don’t know R and t, can we estimate E from two images?
• Yes, given at least 5 correspondences

Vincent Frémont Vision for Robotics 17 / 78

How to compute the Essential Matrix?

Multiple View Geometry 1

• The Essential matrix E is defined by

p̄T2 Ep̄1 = 0

• Each pair of point correspondences p̄1 = (ū1, v̄1, 1)T ,
p̄2 = (ū2, v̄2, 1)T provides a linear equation:

ū2ū1e11+ū2v̄1e12+ū2e13+v̄2ū1e21+v̄2v̄1e22+v̄2e23+ū1e31+v̄1e32+e33 = 0

with

E =



e11 e12 e13
e21 e22 e23
e31 e32 e33




Vincent Frémont Vision for Robotics 18 / 78

The 8-point algorithm

7.1. EPIPOLAR GEOMETRY 91
Multiple View Geometry 1

• For n points, we can write




ū2,1ū1,1 ū2,1v̄1,1 ū2,1 v̄2,1ū1,1 v̄2,1v̄1,1 v̄2,1 ū1,1 v̄1,1 1
ū2,2ū1,2 ū2,2v̄1,2 ū2,2 v̄2,2ū1,2 v̄2,2v̄1,2 v̄2,2 ū1,2 v̄1,2 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ū2,nū1,n ū2,nv̄1,n ū2,n v̄2,nū1,n v̄2,nv̄1,n v̄2,n ū1,n v̄1,n 1




︸ ︷︷ ︸
Q (known)




e11
e12
e13
e21
e22
e23
e31
e32
e33




︸ ︷︷ ︸
Ē (unknown)

= 0

• Solve the overdetermined Q.Ē = 0 using SVD factorization
[U, S, V] = SVD(Q) .

• The solution Ēest is the singular vector of V associated with the
smallest singular value of S

Vincent Frémont Vision for Robotics 19 / 78

Multiple View Geometry 1

• Singular Value Decomposition: E = USVT

• Enforcing rank-2 constraint: set smallest singular value of S to 0:

S =



σ1 0 0
0 σ2 0
0 0 ��σ3


 =



σ1 0 0
0 σ2 0
0 0 0




ˆ[t]× = U




0 ∓1 0
±1 0 0
0 0 0


 SVT and R̂ = U




0 ∓1 0
±1 0 0
0 0 0


 VT

t = Kt̂ and R = KR̂K−1

Vincent Frémont Vision for Robotics 20 / 78

Extract R and t from E

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 21 / 78

4 possible solutions for R and t

92 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

• Matched points are usually contaminated by outliers (i.e., wrong
image matches)

• Causes of outliers are:
• changes in view point (including scale) and illumination
• image noise
• occlusions
• blur

• For the camera motion to be estimated accurately, outliers must be
removed

• This is the task of Robust Estimation

Robust Estimation

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 24 / 78

Influence of Outliers on Motion Estimation

Multiple View Geometry 1

• RANSAC is the standard method for model fitting in the presence
of outliers (very noisy points or wrong data)

• It can be applied to all sorts of problems where the goal is to
estimate the parameters of a model from the data (e.g., camera
calibration, Structure from Motion, DLT, PnP, P3P, Homography,
etc.)

• Let’s review RANSAC for line fitting and see how we can use it to
do Structure from Motion

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications
to image analysis and automated cartography. Graphics and Image Processing, 1981.

Vincent Frémont Vision for Robotics 25 / 78

RANSAC (RAndom SAmple Consensus)

7.1. EPIPOLAR GEOMETRY 93

1 Select sample of 2 points at random
2 Calculate model parameters that fit the

data in the sample
3 Calculate error function for each data point

4 Select data that supports current
hypothesis:

5 Repeat
Multiple View Geometry 1

Vincent Frémont Vision for Robotics 32 / 78

Repeat and repeat

Select the set with the
maximum number of inliers
obtained within k iterations

How many iterations does RANSAC need?
• Ideally: check all possible combinations of 2 points in a dataset of
N points.

• Number of all pairwise combinations: N(N − 1)/2
• computationally unfeasible if N is too large.
• example: 1000 points ⇒ need to check all 1000*999/2 ≈ 500 000

possibilities!
• Do we really need to check all possibilities or can we stop

RANSAC after some iterations?
• Checking a subset of combinations is enough if we have a rough

estimate of the percentage of inliers in our dataset
• This can be done in a probabilistic way

• w: number of inliers/N
N : total number of data points
⇒ w: fraction of inliers in the dataset ⇒ w =P(selecting an inlier-point out of
the dataset)

94 CHAPTER 7. MULTIPLE-VIEW GEOMETRY

• Assumption: the 2 points necessary to estimate a line are selected
independently
⇒ w2: P(both selected points are inliers)
⇒ 1− w2: P(at least one of these two points is an outlier)

• Let k: nb. of RANSAC iterations executed so far
⇒ (1− w2)k: P(RANSAC never selected two points that are both inliers)

• Let p: P(probability of success)
⇒ 1− p(1− w2)k and therefore:

k =
log(1− p)
log 1− w2

• The number of iteration k is:

• Knowing the fraction of inliers w, after k RANSAC iterations we
will have a probability p of finding a set of points free of outliers

• Example: if we want a probability of success p=99% and we know
that w=50% ⇒ k=16 iterations - these are dramatically fewer than
the number of all possible combinations! As you can see, the
number of points does not influence the estimated number of
iterations, only w does!

1 Initial: let A be a set of N points
2 Repeat
3 Randomly select a sample of 2 points from A

4 Fit a line through the 2 points
5 Compute the distances of all other points to this line
6 Construct the inlier set (i.e. count the number of points whose

distance < d)
7 Store these inliers
8 Until maximum number of iterations k reached
9 The set with the maximum number of inliers is chosen as a

solution to the problem

RANSAC applied to Line Fitting

• In practice we only need a rough estimate of w. More advanced
variants of RANSAC estimate the fraction of inliers and adaptively
update it at every iteration

Multiple View Geometry 1

1 Initial: let A be a set of N points
2 Repeat
3 Randomly select a sample of s points from A

4 Fit a model through the s points
5 Compute the distances of all other points to this model
6 Construct the inlier set (i.e. count the number of points whose

distance < d)
7 Store these inliers
8 Until maximum number of iterations k reached
9 The set with the maximum number of inliers is chosen as a

solution to the problem

k =
log(1− p)
log 1− ws

Vincent Frémont Vision for Robotics 38 / 78

RANSAC applied to general model fitting

7.1. EPIPOLAR GEOMETRY 95
Multiple View Geometry 1

In order to implement RANSAC for Structure From Motion (SFM), we
need three key ingredients:

1 What’s the model in SFM?
2 What’s the minimum number of points to estimate the model?
3 How do we compute the distance of a point from the model? In

other words, can we define a distance metric that measures how
well a point fits the model?

Vincent Frémont Vision for Robotics 39 / 78

The Three Key Ingredients of RANSAC

Multiple View Geometry 1

1 What’s the model in SFM?
• The Essential Matrix (for calibrated cameras) or the Fundamental

Matrix (for uncalibrated cameras)
• Alternatively, R and t

2 What’s the minimum number of points to estimate the model?
• We know that 5 points is the theoretical minimum number of points
• However, if we use the 8-point algorithm, then 8 is the minimum

3 How do we compute the distance of a point from the model? In
other words, can we define a distance metric that measures how
well a point fits the model?
• We can use the epipolar constraint (p̄T

2 Ep̄1 = 0 or pT
2 Fp1 = 0) to

measure how well a point correspondence verifies the model E or F,
respectively. However, the Directional error, the Epipolar line
distance, or the Reprojection error (even better) are used

Vincent Frémont Vision for Robotics 40 / 78

Answers

Multiple View Geometry 1

k is exponential in the number of points s necessary to estimate the
model:

Vincent Frémont Vision for Robotics 41 / 78

RANSAC iterations k vs. s

96 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

k is exponential with the fraction of outliers ε

Vincent Frémont Vision for Robotics 42 / 78

RANSAC iterations k vs. ε

Multiple View Geometry 1

• As observed, k is exponential in the number of points s necessary to estimate
the model

• The 8-point algorithm is extremely simple and was very successful; however,
it requires more than 1177 iterations

• Because of this, there has been a large interest by the research community in
using smaller motion parameterizations (i.e., smaller s)

• The first efficient solution to the minimal-case solution (5-point algorithm)
took almost a century (Kruppa 1913 ? Nister 2004)

• The 5-point RANSAC (Nister 2004) only requires 145 iterations; however:

• The 5-point algorithm can return up to 10 solutions of E (worst
case scenario)

• The 8-point algorithm only returns a unique solution of E

Can we use less than 5 points?
Yes, if you use motion constraints!

Vincent Frémont Vision for Robotics 43 / 78

RANSAC iterations

Multiple View Geometry 1

• Planar motion is described by three parameters: θ, φ, ρ

R =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 and t =




ρ cosφ
ρ sinφ

0




• Let’s compute the Epipolar Geometry
• E = [t]×R, the Essential Matrix
• p̄T

2 Ep̄1 = 0, the Epipolar Constraint

Vincent Frémont Vision for Robotics 44 / 78

Planar Motion

7.1. EPIPOLAR GEOMETRY 97
Multiple View Geometry 1

• Planar motion is described by three parameters: θ, φ, ρ

R =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 and t =




ρ cosφ
ρ sinφ

0




• Let’s compute the Epipolar Geometry

E = [t]×R =




0 0 ρ sinφ
0 0 −ρ cosφ

−ρ sinφ ρ cosφ 0






cos θ − sin θ 0
sin θ cos θ 0

0 0 1




⇒ E =




0 0 ρ sinφ
0 0 −ρ cosφ

−ρ sin(φ− θ) ρ cos(φ− θ) 0




Vincent Frémont Vision for Robotics 45 / 78

Multiple View Geometry 1

Planar motion is described by three parameters: θ, φ, ρ

R =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 and t =




ρ cosφ
ρ sinφ

0




Observe that E has 2DoF (θ, φ because ρ is the scale factor); thus, 2
correspondences are sufficient to estimate θ and φ ["2-Point RANSAC", Ortin, 2001]

E = [t]×R =




0 0 ρ sinφ
0 0 −ρ cosφ

−ρ sin(φ− θ) ρ cos(φ− θ) 0




Vincent Frémont Vision for Robotics 46 / 78

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 47 / 78

Planar & Circular Motion (e.g., cars)

98 CHAPTER 7. MULTIPLE-VIEW GEOMETRYMultiple View Geometry 1

Planar motion is described by three parameters: θ, φ, ρ

R =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 and t =




ρ cosφ
ρ sinφ

0




Let’s compute the Epipolar Geometry

E = [t]×R = ρ




0 0 sin θ
2

0 0 − cos θ
2

sin θ
2
− cos θ

2
0




T
2p̄ Ep̄1 = 0⇒ sin θ

2
(ū2 + ū1) + cos θ

2
(v̄2 + v̄1) = 0

θ = −2 tan−1

(
v̄2 + v̄1

ū2 + ū1

)

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 51 / 78

1-Point RANSAC algorithm

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 52 / 78

Comparison of RANSAC algorithms

7.2. TRIANGULATION 99

7.2 Triangulation

Multiple View Geometry 1

Given: corresponding measured (i.e. noisy) points x and x′, and
cameras (exact) P and P′, compute the 3D point X
Problem: in the presence of noise, back projected rays do not intersect

Measured points do not lie on corresponding epipolar lines

Vincent Frémont Vision for Robotics 54 / 78

Problem statement

Multiple View Geometry 1

Compute the mid-point of the shortest line between the two rays

Vincent Frémont Vision for Robotics 55 / 78

1. Vector solution

Multiple View Geometry 1

Use the equations x ∼ PX and x′ ∼ P′X to solve for X
For the first camera :

P =



p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34


 =




p1T

p2T

p3T




Eliminate unknown scale in λx = PX by forming a cross-product
x× PX = 0

x(p3TX)− (p1TX) = 0
y(p3TX)− (p2TX) = 0
x(p2TX)− y(p1TX) = 0

Rearrange as [
xp3T − p1T

yp3T − p2T

]
X = 0

Vincent Frémont Vision for Robotics 56 / 78

2. Linear triangulation (algebraic solution)

100 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

Similarly for the second camera :
[
x′p′3T − p′1T

y′p′3T − p′2T

]
X = 0

Collecting together gives
AX = 0

where A is a 4× 4 matrix

A =




xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T




from which X can be solved up to scale.
Problem: does not minimize anything meaningful
Advantage: extends to more than two views
Vincent Frémont Vision for Robotics 57 / 78

Multiple View Geometry 1

The idea is to estimate a 3D point X̂ which exactly satisfies the
supplied camera geometry, so it projects as

x̂ ∼ PX̂ and x̂′ ∼ P′X̂

and the aim is to estimate X̂ from the image measurements x and x′

minX̂C(x,x
′) = d(x, x̂)2 + d(x′, x̂′)2

Vincent Frémont Vision for Robotics 58 / 78

3. Minimizing a geometric/statistical error

Multiple View Geometry 1

Problem Statement Given: two images and their associated cameras
compute corresponding image points.

Algorithms may be classified into two types:
1 Dense: compute a correspondence at every pixel
2 Sparse: compute correspondences only for features

Vincent Frémont Vision for Robotics 59 / 78

Stereo Correspondence Algorithms

7.2. TRIANGULATION 101
Multiple View Geometry 1

K = K′ =



f

f
1


 R = I t =




tx
0
0




Then y′ = y, and the disparity d = x′ − x = ftx
Z

Derivation : x
f = X

Z ,
x′
f = X+tx

Z
x′
f = x

f + tx
Z

Note :
• image movement (disparity) is inversely proportional to depth Z
• depth is inversely proportional to disparity

Vincent Frémont Vision for Robotics 60 / 78

Depth and disparity for a parallel camera stereo rig

Multiple View Geometry 1

Parallel cameras: epipolar lines are corresponding rasters

Search problem (geometric constraint): for each point in the left image, the
corresponding point in the right image lies on the epipolar line (1D ambiguity)
Disambiguating assumption (photometric constraint): the intensity
neighbourhood of corresponding points are similar across images
Measure similarity of neighbourhood intensity by cross-correlation

Vincent Frémont Vision for Robotics 61 / 78

Dense Correspondence Algorithm

Multiple View Geometry 1

Intensity profiles

Clear correspondence between intensities, but also noise and ambiguity

Vincent Frémont Vision for Robotics 62 / 78

Dense Correspondence Algorithm

102 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

Local similarity maximization

Block matching by correlation

Vincent Frémont Vision for Robotics 63 / 78

Similarity Measure, principle

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 64 / 78

Normalized cross-correlation

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 65 / 78

Cross-correlation of neighborhood regions

7.2. TRIANGULATION 103
Multiple View Geometry 1

Vincent Frémont Vision for Robotics 66 / 78

Multiple View Geometry 1

For each pixel in the left image
• compute the neighborhood cross correlation along the

corresponding epipolar line in the right image
• the corresponding pixel is the one with the highest cross-correlation

Parameters
• size (scale) of neighborhood
• search disparity

Other constraints
• uniqueness
• ordering
• smoothness of disparity field

Applicability
• textured scene, largely fronto-parallel

Vincent Frémont Vision for Robotics 68 / 78

Sketch of a dense correspondence algorithm

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 69 / 78

104 CHAPTER 7. MULTIPLE-VIEW GEOMETRY
Multiple View Geometry 1

Vincent Frémont Vision for Robotics 71 / 78

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 72 / 78

Multiple View Geometry 1

d = x′ − x = ftx
Z , Z = ftx

d , δZδd = −ftx
d2 = − Z2

ftx

δZ = − Z
2

ftx
δd

Depth error proportional to depth squared

Vincent Frémont Vision for Robotics 73 / 78

Error Analysis

7.2. TRIANGULATION 105
Multiple View Geometry 1

Vincent Frémont Vision for Robotics 74 / 78

Rectification

Vincent Frémont Vision for Robotics 76 / 78

Multiple View Geometry 1

Vincent Frémont Vision for Robotics 78 / 78

106 CHAPTER 7. MULTIPLE-VIEW GEOMETRY

Chapter 8

Deep Learning and Semantic
Segmentation

8.1 Introduction

A linear predictor can be used to classify vector data. But how such a predictor can be
applied to images, text, videos, or sounds? This is possible thanks to an encoder, which maps
the data to a vectorial representation:

A meaningful representation φ has to be sensitive to semantic variations, and reflect in the
embedding space the semantic distance between two images x,y:

The difference between Deep Learning methods and other representation method is that in
this case all the process is hidden inside the network:

107

108 CHAPTER 8. DEEP LEARNING AND SEMANTIC SEGMENTATION

8.2 The perceptron

The perceptron is one of the earliest neural network (by Rosenblatt, 1957). It maps a data
vector x to a posterior probability value y (for example the probability that x is an image of a
bicycle as opposed to something else):

The perceptron computes this probability by weighing the vector elements, summing them,
and then applying a non-linear activation function:

What the network learn is to classify elements w.r.t a decision boundary:

8.2. THE PERCEPTRON 109

What is the effects of the learning rate α in terms of classification error E?

110 CHAPTER 8. DEEP LEARNING AND SEMANTIC SEGMENTATION

8.3 Multilayer feedforward neural networks

In this case the model of an artificial neuron is:

The activation functions can vary:

So the complete architecture is:

Example:

8.3. MULTILAYER FEEDFORWARD NEURAL NETWORKS 111

In a matrix form is:

112 CHAPTER 8. DEEP LEARNING AND SEMANTIC SEGMENTATION

8.4 Convolutional neural networks

8.4.1 Backpropagation for FCN training

8.4.2 Elements of convolutional neural networks

The LeNet Network This is the general functional architecture for the LeNet Network:

8.4. CONVOLUTIONAL NEURAL NETWORKS 113

We can see here an example for a handwritten character:

After the training the network is then able to (probably) recognize the character:

In the following image we can see the the weights of a trained LeNet architecture. On the top
there the weights (shown as 5x5pixels images) corresponding to the 6 feature maps in the first
layer of the CNN. On the bottom there are the weights corresponding to the 12 feature maps
of the second layer:

114 CHAPTER 8. DEEP LEARNING AND SEMANTIC SEGMENTATION

We show then a visual summary of an input image propagating through the CNN. Here are
shown all the results of convolution (feature maps) and pooling (pooled feature maps) for
both layers of the network:

8.4. CONVOLUTIONAL NEURAL NETWORKS 115

8.4.3 Learning a deep neural network with backpropagation

Optimization using Stochastic Gradient Descent:

Momentum:

ADAM: Adaptive Moment Estimation:

116 CHAPTER 8. DEEP LEARNING AND SEMANTIC SEGMENTATION

8.4.4 Applications

8.4. CONVOLUTIONAL NEURAL NETWORKS 117

Semantic segmentation: SegNet

Deep Learning Frameworks: Nvidia CUDA drivers + CUDA SDK + CuDNN
(https://developer.nvidia.com/); TensorFlow (https://www.tensorflow.org/) + Keras
(https://keras.io/)

	Introduction to CoVis
	What is computer vision
	Vision in humans
	Computer Vision vs Computer Graphics

	Visual Odometry
	A brief history of VO
	From SFM to VO
	VO working principle

	Image Formation
	Overview on optics
	Perspective geometry
	Digital cameras
	Perspective camera model
	Lens distortion

	Image Formation II: Calibration
	Non-linear algorithms: P3P and PnP for calibrated cameras
	DLT from general 3D objects

	Linear algorithms (DLT) for uncalibrated cameras
	DLT from 3D objects
	DLT from planar grids

	DLT vs PnP
	Non-Linear Estimation

	Filtering and Edge detection
	Noise reduction
	1D Filtering for Gaussian Noise
	2D Filtering - Correlation and convolution
	2D Filtering - Separable Filter Kernels
	Lowpass Filter Kernels
	Non-linear filtering

	Edge detection
	1D Sharpening (Highpass) Spatial Filters
	2D Sharpening Spatial Filters

	Canny edge-detection algorithm

	Feature Point Detection
	Filters for Feature detection and Point-feature extraction
	Automatic Scale Selection, Detectors and Descriptors

	Multiple-view Geometry
	Epipolar Geometry
	Triangulation

	Deep Learning and Semantic Segmentation
	Introduction
	The perceptron
	Multilayer feedforward neural networks
	Convolutional neural networks
	Backpropagation for FCN training
	Elements of convolutional neural networks
	Learning a deep neural network with backpropagation
	Applications

