
ROS Notes - SOFAR Lectures

Davide Lanza

June 12, 2019



Contents

1 Introduction 3
1.1 What is ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Nodes, Topics and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Subscription and publication . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Node tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.5 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.6 Connection graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 ROS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Launch files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Command line tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Workspace initialization 9
2.1 Create a ROS Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Navigating the ROS Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Creating a ROS Package 12
3.1 Package dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Package customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Run ROS nodes 16
4.1 The roscore command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 The rosrun command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 The rosnode ping command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 ROS topics & messages 19
5.1 ROS topics and the rostopic command . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 ROS messages and the rostopic command . . . . . . . . . . . . . . . . . . . . . 20
5.3 Other rostopic commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Subscribe & Publish 22
6.1 A simple C++ node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Services 26
7.1 A sample service: Baxter IK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Tips on using services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 The tf package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.3.1 tf listener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Various 29
8.1 ROS console output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2 ROS parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.2.1 The parameter server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.2.2 Parameters from the command line . . . . . . . . . . . . . . . . . . . . . . . 30

1



CONTENTS 2

8.2.3 Setting parameters in launch files . . . . . . . . . . . . . . . . . . . . . . . . 30
8.2.4 Setting parameters in programs . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.3 Basics of rosbag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Chapter 1

Introduction

1.1 What is ROS

The Robot Operating System is a middleware software: it provides services to applications
beyond those of the operating system.

A ROS application is made of a number of processes, which can run on several hosts, are connected
at run-time peer-to-peer and there is no central server. So, there exists a central entity: the ROS
master that connects the processes at startup and also connects processes each time a new
process is created, but later, communication is peer-to-peer.

1.2 Nodes, Topics and Messages

1.2.1 Basic concepts

Nodes: basic modules.
ROSMaster: core process, connects modules.
Messages: the way modules communicate.
Topics: communication channels for messages.
Parameters: node customization tools, global parameters, etc...
Services: computations on request.

1.2.2 Nodes

A ROS node is an executable program with a well-defined purpose which uses the ROS framework
for execution. It is modular, so it is individually compiled and executed.

Nodes can execute on separate machines, transparently to the programmer.

At creation, nodes are connected to other existing nodes by the rosmaster process. rosmaster
is a kind of name server. It has to be running to run a node. Rosmaster runs in localhost by
default.

Nodes are written with the help of a ROS client library:
→ libraries let you write ROS nodes, publish to topics, subscribe to topics, write services, call

3



CHAPTER 1. INTRODUCTION 4

services, use the parameter server etc... (see later for the explanation of these terms). The main
clients are roscpp and rospy.

1.2.3 Subscription and publication

A node may subscribe to (i.e. listen to) any number of topics (the corresponding topics are the
inputs to the node) and publish to (i.e. send messages to) any number of topics (the corresponding
topics are the outputs of the node.

A node may subscribe to 0 to N topics and may publish to 0 to N topics.

1.2.4 Node tasks

A node may perform different tasks, like interfacing to a sensor and publish its raw data, control
an actuator or execute any kind of specific algorithm (planning, calculate a robot model, process
raw sensor data to extract information...). Nodes can also implement some visualization tool and
simulate the dynamics of a system.

1.2.5 Topics

Nodes communicate by sending messages to topics and listening to topics. A topic defines a
type of message.

It’s a 1-to-N communication: the information published by one node to a topic is available to all
subscribers to the topic. A node who subscribes to a topic receives all the information published
to that topic (possibly by several publishers).

A message is a strictly typed data structure. There are many pre-defined message types for
common data (Pose, quaternion, transformation... Twist... Point clouds, images...) but new types
of messages can be defined if necessary. 1

1.2.6 Connection graph

The rqt graph tool allows checking the connections between nodes via topics. In the following
Figure, the ellipses are the nodes and the rectangles the topics:

1As much as possible, use pre-defined message types.



CHAPTER 1. INTRODUCTION 5

This connection graph is a fundamental tool in the development of a ROS application. Your first
goal is to obtain the proper graph (i.e. the proper connections between nodes).2

Learning how to use rqt graph tool is very important since the graph of complex applications is
usually big.

1.3 ROS Files

1.3.1 Launch files

Launching each node in a different window or thumbnail is long and the process is error-prone.
Moreover, the screen becomes messy with too many windows. Launch files (written in XML) are
the solution to this problem:

It is notable a field called remap. It means remapping and here is how to interpret 3 the from
and to fields:

• For a topic that the node publishes
from should contain what the published topic name would be without any remapping
to should be the name you actually want to be visible in the network (listed by rostopic
list command).

• For a topic that the node subscribes to
from should contain the name that would be expected by the node should no remapping
be performed
to should be a topic name actually present in the network.

2For an even moderately complex application, it is a good idea to first draw the graph you mean to obtain.
3 Many students are initially confused by remappings. Try to keep these rules in mind. Re-read this part when

necessary in the early stages of the labs.



CHAPTER 1. INTRODUCTION 6

Example Let’s consider this situation originally without remapping:

1) Now, let’s consider this first .launch file:

<node pkg="packageA" type="packageA_node" name="nodeA">

<remap from="/foo" to="/bar" />

</node>

<node pkg="packageB" type="packageB_node" name="nodeB">

</node>

We will obtain:

2) Now, let’s consider this other .launch file:

<node pkg="packageA" type="packageA_node" name="nodeA">

</node>

<node pkg="packageB" type="packageB_node" name="nodeB">

<remap from="/bar" to="/foo" />

</node>

We will obtain:

3) Finally, let’s consider this .launch file:

<node pkg="packageA" type="packageA_node" name="nodeA">

<remap from="/foo" to="/foobar" />

</node>

<node pkg="packageB" type="packageB_node" name="nodeB">

<remap from="/bar" to="/foobar" />

</node>

We will obtain:

As illustrated by these three examples, there are always multiple solutions to a remapping problem.
Obtaining clear topic names is more important than minimizing the number of remappings.

There are ways for the programmer to ease the work of the package/node users by a careful naming
of the topics because:

• Node names may be automatically prepended to the topic name (/nodeName/topicName).

• Topic names can be made sensitive to the namespace in which the node is run.

With the launch file there is no need to explicitly launch the ROS master with roslaunch,
because either roslaunch uses an already running one if any (case of the Baxter) or roslaunch
launches a roscore otherwise.

The node name cannot specify a namespace (/robot/something) and cannot have an
initial “/”.



CHAPTER 1. INTRODUCTION 7

Anything which takes place between <node> and </node> is local to the node (e.g. name
remapping).

Use rqt graph to check the connections between nodes. If nodes you wanted to be connected are
not, then some remapping remains to be done.

1.3.2 Messages

As we already saw, essages are strictly typed data structures for inter-node communication, that
can include primitive types (boolean, integer, floating-point), arrays of primitive types, nested
structures and arrays, like in C.

ROS predefines may useful types of messages, but programmers can define their own messages
whenever a predefined message is not available.

Examples Let’s consider these different messages:

1) Pose2D Message :

File: geometry_msgs/Pose2D.msg

The raw message definition is:

We can have also a compact definition:

float64 x

float64 y

float64 theta

2) JointState Message :

File: geometry_msgs/JointState.msg

The raw message definition is:



CHAPTER 1. INTRODUCTION 8

For the Baxter, for example, a sample joint state could be:

---

header:

seq: 609991

stamp:

secs: 1394012854

nsecs: 243818360

frame_id: ’’

name: [’head_nod’, ’head_pan’,

’left_e0’, ’left_e1’,

’left_s0’, ’left_s1’,

’left_w0’, ’left_w1’, ’left_w2’,

’right_e0’, ’right_e1’,

’right_s0’, ’right_s1’,

’right_w0’, ’right_w1’, ’right_w2’,

’torso_t0’]

Position: [0.0, ... suppressed ...]

Velocity: [0.0, -0.0179763373374939,... suppressed ...]

Effort: [0.0, 0.0, -9.556, ... suppressed ...]

---

1.4 Command line tools

Here a list of the main ROS commands for nodes:

• rosnode list : list all nodes

• rosnode ping <node> : test whether a node is reachable

• rosnode info <node> : print info about a node

• rosnode machine : list machines in the configuration

• rosnode machine <machine name> : list nodes running on a given machine

• rosnode kill <node> : kill a running node

• rosnode cleanup : remove unreachable nodes from registration information

• rosnode <command> -h : get command help

Here a list of the main ROS commands for topics:

• rostopic list : list all active topics

• rostopic info <topic> : print info about a topic

• rostopic type <topic> : display topic type

• rostopic hz <topic> : print publishing rate

• rostopic echo <topic> : print topic contents to screen

• rostopic bw <topic> : print bandwidth used by a topic

• rostopic <topic> -h : print topic specific help



Chapter 2

Workspace initialization

2.1 Create a ROS Workspace

Let’s create and build a catkin workspace:

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/

$ catkin_make

In our case:

$ mkdir -p workspace/sofar_catkin_ws/src

$ cd workspace/sofar_catkin_ws/

$ catkin_make

The catkin make command is a convenience tool for working with catkin workspaces. Running
it the first time in your workspace, it will create a CMakeLists.txt link in your ’src’ folder.
Additionally, if you look in your current directory you should now have a ’build’ and ’devel’
folder.

Inside the ’devel’ folder you can see that there are now several setup.*sh files. Sourcing any
of these files will overlay this workspace on top of your environment. To understand more about
this see the general catkin documentation at www.wiki.ros.org/catkin.

Before continuing source your new setup.*sh file:

$ source devel/setup.bash

To make sure your workspace is properly overlayed by the setup script, make sure ROS PACKAGE PATH
environment variable includes the directory you’re in with the following command:

$ echo $ROS_PACKAGE_PATH

We should obtain

9

http://wiki.ros.org/catkin


CHAPTER 2. WORKSPACE INITIALIZATION 10

/home/youruser/catkin_ws/src:/opt/ros/kinetic/share

In our case we obtained:

/home/davidelanz/workspace/sofar_catkin_ws/src:/opt/ros/melodic/share

Error “setup.bash not found”: it can happen to have an error like:

bash: /home/user/catkin_ws/devel/setup.bash: No such file or directory

In this case the program has left some unnecessary lines in the /.bashrc file. This file /home-
/user/catkin ws/devel/setup.bash could have been added by the command like:

$ echo "source/opt/ros/jade/setup.bash" >> ~/.bashrc.

Use this command to find and delete them:

gedit ~/.bashrc

In here we can add and remove the setup files to add to the bash:

2.2 Navigating the ROS Filesystem

To inspect a package we need ros-tutorials (<distro> for us is melodic):

$ sudo apt-get install ros-<distro>-ros-tutorials

Remind:
– Packages: Packages are the software organization unit of ROS code. Each package can contain
libraries, executables, scripts, or other artifacts.
– Manifests (package.xml): A manifest is a description of a package. It serves to define de-
pendencies between packages and to capture meta information about the package like version,
maintainer, license, etc...

Code is spread across many ROS packages. Navigating with command-line tools such as ls and cd
can be very tedious which is why ROS provides you Filesystem Tools to help you.

◦ rospack allows you to get information about packages ($ is the command, without is the
console message):

$ rospack find [package_name]

YOUR_INSTALL_PATH/share/roscpp

An example:

$ rospack find roscpp

/opt/ros/melodic/share/roscpp

◦ roscd is part of the rosbash suite. It allows you to change directory (cd) directly to a
package or a stack:

$ roscd [locationname[/subdir]]

To verify that we have changed to the roscpp package directory, run this example:

$ roscd roscpp



CHAPTER 2. WORKSPACE INITIALIZATION 11

Now let’s print the working directory using the Unix command pwd1:

$ pwd

YOUR_INSTALL_PATH/share/roscpp

roscd can also move to a subdirectory of a package or stack:

$ roscd roscpp/cmake

$ pwd

YOUR_INSTALL_PATH/share/roscpp/cmake

◦ echo and ROS PACKAGE PATH from the previous example you can see that YOUR -
INSTALL PATH/share/roscpp is the same path that rospack find gave in the corresponding
example.

Note that roscd, like other ROS tools, will only find ROS packages that are within the directories
listed in your ROS PACKAGE PATH. To see what is in your ROS PACKAGE PATH, type:

$ echo $ROS_PACKAGE_PATH

Your ROS PACKAGE PATH should contain a list of directories where you have ROS packages sep-
arated by colons. Similarly to other environment paths, you can add additional directories to
your ROS PACKAGE PATH, with each path separated by a colon ’:’.

◦ roscd log will take you to the folder where ROS stores log files. Note that if you have not
run any ROS programs yet, this will yield an error saying that it does not yet exist.

◦ rosls is part of the rosbash suite. It allows you to ls directly in a package by name rather
than by absolute path.

$ rosls [locationname[/subdir]]

For example:

$ rosls roscpp_tutorials

cmake launch package.xml srv

1 pwd stands for Print Working Directory (shell builtin). The default action is to show the current folder as an
absolute path. All components of the path will be actual folder names - none will be symbolic links.



Chapter 3

Creating a ROS Package

For a package to be considered a catkin package it must meet a few requirements:

• The package must contain a catkin compliant package.xml file. That package.xml file
provides meta information about the package.

• The package must contain a CMakeLists.txt which uses catkin. If it is a catkin meta-
package it must have the relevant boilerplate CMakeLists.txt file.

• Each package must have its own folder. This means no nested packages nor multiple pack-
ages sharing the same directory.

The simplest possible package might have a structure which looks like this:

my_package/

CMakeLists.txt

package.xml

The recommended method of working with catkin packages is using a catkin workspace, but
you can also build catkin packages standalone. A trivial workspace might look like this:

workspace_folder/ -- WORKSPACE

src/ -- SOURCE SPACE

CMakeLists.txt -- ’Toplevel’ CMake file, provided by catkin

package_1/

CMakeLists.txt -- CMakeLists.txt file for package_1

package.xml -- Package manifest for package_1

...

package_n/

CMakeLists.txt -- CMakeLists.txt file for package_n

package.xml -- Package manifest for package_n

So, we have to use the catkin create pkg script to create a new catkin package. First,
we have to change to the source space directory of the catkin workspace you created. Then,

12



CHAPTER 3. CREATING A ROS PACKAGE 13

use the catkin create pkg script to create a new package called, for example, ’begin-
ner tutorials’ which depends on std msgs, roscpp, and rospy:

$ catkin_create_pkg beginner_tutorials std_msgs rospy roscpp

This will create a beginner tutorials folder which contains a package.xml and a CMake-
Lists.txt, which have been partially filled out with the information you gave catkin create pkg.

catkin create pkg requires that you give it a package name and optionally a list of depen-
dencies on which that package depends:

# This is a template example, do not try to run this:

# catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

catkin create pkg also has more advanced functionalities which are described in
www./wiki.ros.org/catkin/commands/catkin create pkg.

After the creation, we need to build the packages in the catkin workspace:

$ cd ~/catkin_ws

$ catkin_make

After the workspace has been built it has created a similar structure in the devel subfolder as you
usually find under /opt/ros/$ROSDISTRO NAME.

As we already saw, to add the workspace to your ROS environment you need to source the gener-
ated setup file:

$ . ~/catkin_ws/devel/setup.bash

3.1 Package dependencies

First-order dependencies When using catkin create pkg earlier, a few package depen-
dencies were provided. These first-order dependencies can now be reviewed with the rospack
depends1 tool.

$ rospack depends1 beginner_tutorials

roscpp

rospy

std_msgs

As you can see, rospack lists the same dependencies that were used as arguments when running
the package creation script. These dependencies for a package are stored in the package.xml
file. To visualize it in console use the cat command:

$ roscd beginner_tutorials

$ cat package.xml

<package format="2">

...

<buildtool_depend>catkin</buildtool_depend>

<build_depend>roscpp</build_depend>

<build_depend>rospy</build_depend>

<build_depend>std_msgs</build_depend>

...

</package>

Indirect dependencies In many cases, a dependency will also have its own dependencies. For
instance, rospy has other dependencies:

$ rospack depends1 rospy

genpy

http://wiki.ros.org/catkin/commands/catkin_create_pkg


CHAPTER 3. CREATING A ROS PACKAGE 14

roscpp

rosgraph

rosgraph_msgs

roslib

std_msgs

A package can have quite a few indirect dependencies. Luckily rospack depends can recur-
sively determine all nested dependencies:

$ rospack depends beginner_tutorials

cpp_common rostime roscpp_traits roscpp_serialization catkin genmsg genpy

message_runtime gencpp geneus gennodejs genlisp message_generation rosbuild

rosconsole std_msgs rosgraph_msgs xmlrpcpp roscpp rosgraph ros_environment

rospack roslib rospy

3.2 Package customization

At Section 6 of www.wiki.ros.org/ROS/Tutorials/CreatingPackage you can find all the instruction
in order to custom your newly created package:

6.1 Customizing the package.xml

6.1.1 description tag

6.1.2 maintainer tags

6.1.3 license tags

6.1.4 dependencies tags

6.1.5 Final package.xml

6.2 Customizing the CMakeLists.txt

3.3 Namespaces

Default node name To specify the name of the node in his source code we use:

int main (int argc, char** argv)

{

//ROS Initialization

ros::init(argc, argv, "some_name");

(...)

The default node name must not include any namespace (i.e. no “/” in the name).

The default node name is the only one used when the node is launched with:

$ rosrun package_name some_name

But when launched from a launch file, the “name” field is compulsory.

Topic name in code vs in network Disregarding remap instructions, which can always alter
topic names, the name of a topic in the network depends on:

– Its name in the source code of the node, and whether it starts with a “/” or not.

– Whether the subscriber/publisher object is created using a local namespace node handle,
e.g. nh(‘‘∼’’), or a global namespace node handle, e.g. nh.

– Whether it is used within a <group ns=’’...’’> ... </group> in a launch file (namespace).

http://wiki.ros.org/ROS/Tutorials/CreatingPackage


CHAPTER 3. CREATING A ROS PACKAGE 15

In fact, we can notice that from the following table:

Example Imagine an application controlling two teams of players and a referee. The launch file
could include:

Let us look at some topics that could be present in the application:

• The whistle topic could fall into the first/second case.

• The captain’s instruction could be in the third case.

• The control topics for the players legs/feet it would be convenient to set in the fifth case.

Then:

• If player node and player control node respectively subscribe to and publish to the
topic leg control in their code, with a local namespace handle and no initial “/”, no
remapping of this topic between these nodes is necessary.

• If referee node and player node publish to and subscribe to /whistle, no remapping
is necessary for this topic.



Chapter 4

Run ROS nodes

Here we’ll use the already seen lighweight simulator ros-tutorials:

$ sudo apt-get install ros-<distro>-ros-tutorials

Recall:
– Nodes: A node is an executable that uses ROS to communicate with other nodes.
– Messages: ROS data type used when subscribing or publishing to a topic.
– Topics: Nodes can publish messages to a topic as well as subscribe to a topic to receive messages.
– Master: Name service for ROS (i.e. helps nodes find each other)
– rosout: ROS equivalent of stdout/stderr
– roscore: Master + rosout + parameter server (parameter server will be introduced later)

A node really isn’t much more than an executable file within a ROS package. ROS nodes use a
ROS client library to communicate with other nodes. Nodes can publish or subscribe to a Topic.
Nodes can also provide or use a Service.

ROS client libraries allow nodes written in different programming languages to communicate.
For example:

• rospy = Python client library

• roscpp = C++ client library

4.1 The roscore command

The command roscore is the first thing you should run when using ROS:

$ roscore

Open up a new terminal, and let’s use rosnode to see what running roscore did.1 This com-
mand displays information about the ROS nodes that are currently running. The rosnode list
command lists these active nodes:

$ rosnode list

/rosout

This showed us that there is only one node running: rosout. This is always running as it collects
and logs nodes’ debugging output.

The rosnode info command returns information about a specific node:

1 When opening a new terminal your environment is reset and your ˜/.bashrc file is sourced. If you have trouble
running commands like rosnode then you might need to add some environment setup files to your ˜/.bashrc or
manually re-source them.

16



CHAPTER 4. RUN ROS NODES 17

$ rosnode info /rosout

------------------------------------------------------------------------

Node [/rosout]

Publications:

* /rosout_agg [rosgraph_msgs/Log]

Subscriptions:

* /rosout [unknown type]

Services:

* /rosout/get_loggers

* /rosout/set_logger_level

contacting node http://machine_name:54614/ ...

Pid: 5092

4.2 The rosrun command

The rosrun command allows you to use the package name to directly run a node within a package
(without having to know the package path).

$ rosrun [package_name] [node_name]

For example, we can run theturtlesim node contained in the turtlesim package to show the
TurtleSim window:

$ rosrun turtlesim turtlesim_node

Then, typing in a new terminal:

$ rosnode list

/rosout

/turtlesim

One powerful feature of ROS is that you can reassign names from the command-line. After
closing the “turtlesim” window (to stop the node) re-run it, but using a Remapping Argument
to change the node’s name:

$ rosrun turtlesim turtlesim_node __name:=my_turtle

Now, if we go back and use rosnode list2:

$ rosnode list

/my_turtle

/rosout

4.3 The rosnode ping command

We can the use rosnode ping to test that the node is up:

$ rosnode ping my_turtle

rosnode: node is [/my_turtle]

pinging /my_turtle with a timeout of 3.0s

xmlrpc reply from http://DLANZA-HP250G1:46339/ time=0.771046ms

2 If you still see /turtlesim in the list, it might mean that you stopped the node in the terminal using
ctrl+C instead of closing the window, or that you don’t have the $ROS HOSTNAME environment variable defined
as described in Network Setup - Single Machine Configuration. You can try cleaning the rosnode list with: $
rosnode cleanup.



CHAPTER 4. RUN ROS NODES 18

xmlrpc reply from http://DLANZA-HP250G1:46339/ time=1.283884ms

xmlrpc reply from http://DLANZA-HP250G1:46339/ time=1.255989ms

xmlrpc reply from http://DLANZA-HP250G1:46339/ time=1.008034ms

ping average: 1.079738ms



Chapter 5

ROS topics & messages

For this part we will need three terminals:

# on Terminal 1:

$ roscore

# on Terminal 2:

$ rosrun turtlesim turtlesim_node

# on Terminal 3:

$ rosrun turtlesim turtle_teleop_key

Now we can use the arrow keys of the keyboard to drive the turtle around.

The turtlesim node and the turtle teleop key node are communicating with each other
over a ROS Topic.

turtle teleop key is publishing the key strokes on a topic, while turtlesim subscribes to
the same topic to receive the key strokes.

Let’s use rqt graph which shows the nodes and topics currently running:

5.1 ROS topics and the rostopic command

The rostopic tool allows you to get information about ROS topics. You can use the help option
to get the available sub-commands for rostopic:

$ rostopic -h

rostopic bw display bandwidth used by topic

rostopic echo print messages to screen

rostopic hz display publishing rate of topic

rostopic list print information about active topics

rostopic pub publish data to topic

rostopic type print topic type

Let’s use some of these topic sub-commands to examine turtlesim:

◦ rostopic echo :

19



CHAPTER 5. ROS TOPICS & MESSAGES 20

$ rostopic echo /turtle1/cmd_vel

# After pressing the left arrow button:

linear:

x: 0.0

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: -2.0

---

Note: if we look at rqt graph again now, (after refresh) we can see rostopic echo, shown
here in red, now also subscribed to the turtle1/command velocity topic:

◦ rostopic list :

# Check the options with help command:

$ rostopic list -h

Usage: rostopic list [/namespace]

Options:

-h, --help : show this help message and exit

-b BAGFILE, --bag=BAGFILE : list topics in .bag file

-v, --verbose : list full details about each topic

-p : list only publishers

-s : list only subscribers

--host : group by host name

# Use the verbose one:

$ rostopic list -v

Published topics:

* /turtle1/color_sensor [turtlesim/Color] 2 publishers

* /turtle1/cmd_vel [geometry_msgs/Twist] 1 publisher

* /rosout [rosgraph_msgs/Log] 3 publishers

* /rosout_agg [rosgraph_msgs/Log] 1 publisher

* /turtle1/pose [turtlesim/Pose] 2 publishers

Subscribed topics:

* /turtle1/cmd_vel [geometry_msgs/Twist] 2 subscribers

* /rosout [rosgraph_msgs/Log] 1 subscriber

5.2 ROS messages and the rostopic command

Communication on topics happens by sending ROS messages between nodes. For the publisher
(turtle teleop key) and subscriber (turtlesim node) to communicate, the publisher and
subscriber must send and receive the same type of message. This means that a topic type is defined
by the message type published on it. The type of the message sent on a topic can be determined
using:



CHAPTER 5. ROS TOPICS & MESSAGES 21

◦ rostopic type [topic] (returns the message type of any topic being published):

$ rostopic type /turtle1/cmd_vel

geometry_msgs/Twist

We can also look at the details of the message using rosmsg:

$ rosmsg show geometry_msgs/Twist

geometry_msgs/Vector3 linear

float64 x

float64 y

float64 z

geometry_msgs/Vector3 angular

float64 x

float64 y

float64 z

5.3 Other rostopic commands

◦ rostopic pub [topic] [msg type] [args] publishes data on to a topic currently ad-
vertised:

$ rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist -- ’[2.0, 0.0, 0.0]’ ’[0.0,

0.0, 1.8]’

◦ rostopic hz [topic] reports the rate at which data is published:

$ rostopic hz /turtle1/pose

subscribed to [/turtle1/pose]

average rate: 59.354

min: 0.005s max: 0.027s std dev: 0.00284s window: 58

average rate: 59.459

min: 0.005s max: 0.027s std dev: 0.00271s window: 118

5.4 Plotting

rqt plot displays a scrolling time plot of the data published on topics. Here we’ll use rqt plot
to plot the data being published on the /turtle1/pose topic.



Chapter 6

Subscribe & Publish

6.1 A simple C++ node

Here we have a first example in C++ of a simple subscriber/publisher node that periodically
publishes an integer:

This node uses no subscriptions, i.e. it has no inputs. Publishers can also subscribe to topics,
which they use to produce their outputs (publish to topics).

A node which subscribes to a topic will be a little more complex, because it will declare its
subscription in the initialization and it will have a callback function for each topic it subscribes
to.

Callbacks will handle the data inputs “as though” asynchronously.

22



CHAPTER 6. SUBSCRIBE & PUBLISH 23

A “badly” written node Let’s see a publisher with a subscription in the following example:

This node is written in a very simple form, in which publishing is performed in the subscriber
callback. So, the data is published at the same rate it is received and there is no need for an
input queue because the only input velocity we care about is the latest.

Even if this form is suitable for certain uses, the control has to execute at the rate of arrival of
topics. Sometimes you may want it to be a lower rate.



CHAPTER 6. SUBSCRIBE & PUBLISH 24

Also, it becomes awkward when the control uses several input topics (in which callback do I execute
the code?).

Moreover, there is a bad use of resources: the main loop runs at maximum frequency, possibly for
nothing.

A better form :

Here, the control will be at 10 Hz, independent of the frequency at which the turtle poses arrive.



CHAPTER 6. SUBSCRIBE & PUBLISH 25

Some useful tricks:

1. rostopic list + grep to find interesting topics, e.g.:
rostopic list | grep command will display the topics with the word command. Very
useful with complex systems like the Baxter (many topics)

2. I’m interested in topic /turtle1/command velocity. What type are the corresponding
messages?
rostopic type /turtle1/command velocity

3. ROS tells me type is: turtlesim/Velocity.
I will need #include <turtlesim/Velocity.h>

4. What are the data fields of these messages?
rosmsg show turtlesim/Velocity

5. ROS tells me:
float32 linear
float32 angular

6. Now I can fill a turtlesim/Velocity message...

A well configured IDE will alleviate your task a lot. For example, with myVel being an object of
the turtlesim::Velocity class, when you type myVel., the IDE will show that the ’.’ can
be followed by either “linear” or “angular”.

There is less need for rosmsg show commands. Instead of using rosmsg show, in the absence
of a proper IDE, you can search turtlesim/Velocity.h over the internet. But it works only
with ROS predefined message types.

Serious mistakes to avoid:

• Defining subscribers/publishers before execution of ros::init
Reason: creating a subscriber/publisher requires communication with the rosmaster, which
must be running first.

• Defining subscribers/publishers within the main loop or some inner loop.
Creating a publisher/subscriber implies quite a bit of overhead. If you create a new one at
each loop, it’s never ready in time. Generates nasty, hard to debug problems.

• Forgetting ros::spinOnce or executing it only in initialization.
Your callbacks do not execute. Usually your main loop relies on data gathered, and possibly
processed by the callbacks.

• Executing main loop even though no data has been collected by the callbacks yet.
The ros::spinOnce() function essentially means: check whether some data has arrived;
if yes, process it. In the above example, the globals LastLeaderPose and LastFollow-
erPose may initially contain garbage. If necessary, use boolean variables to check that the
callbacks have been executed.



Chapter 7

Services

A service is a way for a node to send a request and receive an answer in return. Services follow
a client/server system, or request/response. They are analogous to Remote Procedure Calls
(RPC).

The client sends a (strictly typed) request message and receives a (strictly typed) response message.

Example: calculate an inverse geometric model for a given pose of the end effector of a robot.

7.1 A sample service: Baxter IK

The response uses an existing ROS message (sensor msgs/JointState), of which only the
position data makes sense.

7.2 Tips on using services

Initializations :

– Define the service client object before the main loop.

ros::ServiceClient some_client =

nh_.serviceClient<somemessage::Type> ("serviceName");

– Check the existence of the service with “exists” method in the initialization part of the code.
You have to wait until the service is ready since the node which provides the service may not yet
be up and running. Alternatively, using “waitForService” is possible.

In the main loop :

– Always check the return value of the “call” method. It will be false if something went wrong.

26



CHAPTER 7. SERVICES 27

if( !some_client.call(service_message) )

ROS_ERROR(‘‘Call to service failed’’);

else

// Do what you have to do...

– Carefully fill the request message. Improperly filled requests cause the call to fail.

– If the response message contains a validity field, check it after each call.

Using the service message object :

– Before the call, fill the request part

service_mesage.request = ?

– After the call, the result is in service message.response.

– Alternatively, the call can take the form:

if( !some_client.call(request,response) )

ROS_ERROR(?Call to service failed?);

else

{

// Do what you have to do...

}

7.3 The tf package

The tf package helps you keep track of transformations between frames. The transforma-
tion between two frames can be calculated automatically as long as they belong to the same
“transformation tree”.

For a frame that you define to be in the transformation tree, you need to broadcast the trans-
formation between your frame and a frame of the tree rooted at “world”. It’s done with a “tf
broadcaster”.

By default, the system assumes that frames move, so you need to periodically broadcast the position
of a frame. After a certain amount of time during which a frame is not broadcast, the frame no
longer appears in the transformation tree.

7.3.1 tf listener

The object which allows to obtain the transformation between two frames of a tree is a

tf::TransformListener listener;

Note: I never checked how much overhead there is when creating a TransformListener object,
but I recommend defining it outside the main loop.

The listener is typically used within a try...catch structure.

try

{

tf::StampedTransform desired_transform;

listener.lookupTransform("frame1", "/frame2", ros::Time(0),

desired_transform);

// Do something with the transform.

}

catch(tf::TransformException ex)

{

ROS_ERROR("%s",ex.what());



CHAPTER 7. SERVICES 28

}



Chapter 8

Various

8.1 ROS console output

Avoid the use of cout to print messages on the console. Use the ROS console! Messages at five
different levels of verbosity:

Debug: ROS_DEBUG

Info: ROS_INFO

Warning: ROS_WARN

Error: ROS_ERROR

Fatal: ROS_FATAL

To visualize it use the rqt console:

29



CHAPTER 8. VARIOUS 30

8.2 ROS parameters

8.2.1 The parameter server

A shared dictionary accessible via network APIs. It is used to store/retrieve parameters at
runtime. It does not have high performance, so better suited for static data (e.g. configuration
parameters, tuning parameters, control gains,...)

Parameter types: 32 bit integers, Booleans, Strings, ...

There are global parameters and private parameters, specific to a node.

Example:

~/catkin_ws/src/turtle_control/launch/turtleControl.launch

8.2.2 Parameters from the command line

rosparam set <name> <value> : set parameter

rosparam get <name> : get parameter

rosparam load <file> : load parameters from file

rosparam dump <file> : dump parameters to file

rosparam delete <name> : delete parameter

rosparam list : list parameter names

Remarks:

• Avoid setting parameters from the command line. Do it in launch files preferably.

• Other commands are useful at check/debug time.

• Load/dump convenient to save/retrieve configurations.

8.2.3 Setting parameters in launch files

<node pkg="foopck" type="foopkg_node" name="foo1" cwd="node">

<param name="foo_param" type="string" value="hello" />

</node>

If the <param ...> section is within a node section, then it concerns a parameter local to the
node.

Several instances of the same node (with different names) can run with their own individual values
of the parameters.

If the <param ...> section is not within a node section, it concerns a global parameter.

type=”str—int—double—bool”(optional)

Specifies the type of the parameter. If you don’t specify the type, roslaunch will attempt to
automatically determine the type. These rules are very basic:

• Numbers with ’.’s are floating point, integers otherwise;

• “true” and “false” are boolean (not case-sensitive).

• All other values are strings

8.2.4 Setting parameters in programs

nh is the node handle (see previous sections). To access private parameters, the handle must be
created with the private namespace as its namespace:



CHAPTER 8. VARIOUS 31

ros::NodeHandle nh_("~")

ROS INFO outputs timed messages, cout does not. But it is not fundamental in this particular
context.

8.3 Basics of rosbag (recording and replaying data)

Replaying data scenarios:

• Recording data for later replay in order to test/tune various algorithms is a very common
need.

• The data need not be recorded by the same persons who will use the data.

• The same data may be shared with various teams working on similar problems.

• You need to be able to replay the data streams with “the same” timing as during the record-
ing.

• You may use only some of the data (e.g. ignore some of the sensors or process only a particular
time interval).


	Introduction
	What is ROS
	Nodes, Topics and Messages
	Basic concepts
	Nodes
	Subscription and publication
	Node tasks
	Topics
	Connection graph

	ROS Files
	Launch files
	Messages

	Command line tools

	Workspace initialization
	Create a ROS Workspace
	Navigating the ROS Filesystem

	Creating a ROS Package
	Package dependencies
	Package customization
	Namespaces

	Run ROS nodes
	The roscore command
	The rosrun command
	The rosnode ping command

	ROS topics & messages
	ROS topics and the rostopic command
	ROS messages and the rostopic command
	Other rostopic commands
	Plotting

	Subscribe & Publish
	A simple C++ node

	Services
	A sample service: Baxter IK
	Tips on using services
	The tf package
	tf listener


	Various
	ROS console output
	ROS parameters
	The parameter server
	Parameters from the command line
	Setting parameters in launch files
	Setting parameters in programs

	Basics of rosbag


