
Machine Learning

Davide Lanza

2019-2020

mailto:davidel96@hotmail.it

Outline The main goals of the course are to (1) obtain an overview of the subject, (2) gain some
practical grasp of the topic by means of lab assignments, (3) get practice in the tools used for that
purpose and (4) get some exposure to tasks such as reading and discussing a research paper.

The course is an introduction to machine learning. Principles and techniques will be given especially,
but not exclusively, in the area of classification. Lab+homework assignments will give students hands-on
experience in building simple learning models.

Professor Stefano Rovetta (stefano.rovetta@unige.it)
DIBRIS Valle Puggia, Via Dodecaneso 35 room 205.
Phone: (010 353) 6605

References Suggested books that cover topics included in the course:

• [DUDA2001] R.O. Duda, P.E. Hart e D.G. Stork, Pattern Classification, 2nd ed., J. Wiley &
Sons, 2001

• [BISHOP2006] C.M. Bishop, Pattern recognition and machine learning, New York, Springer, 2006

• [HASTIE2009] T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd ed., New York, Springer, 2009

• [FLETCHER2000] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley & Sons,
2000

• [GOODFELLOW2016] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press

Book that covers a popular Python framework, not included in the course but useful:

• [CHOLLET2017] F. Chollet, Deep Learning with Python, Manning, 2017

Introductory concepts [DUDA2001] Ch.1

Probability concepts [BISHOP2006] Ch.1 sec. 2

Bayes decision theory and classi-
fication

[DUDA2001] Ch.2

Naive Bayes classifier [HASTIE2009] Ch.6 sec. 6.3

Linear regression [BISHOP2006] Ch.3 sec. 1,

[HASTIE2009] Ch.3 (more details than needed)

Parameter estimation and maxi-
mum likelihood

[DUDA2006] Ch.3 Sec. 1 and 2

Bias-variance decomposition [BISHOP2006] Ch.3 Sec. 2,
[HASTIE2009] Ch.7 Sec. 3

Nearest neighbour classifiers [DUDA2001] Ch.4 Sec. 5

Decision trees [DUDA2001] Ch.8 Sec. 1 to 4

Random forests [HASTIE2009] Ch.15

Neural networks [BISHOP2006] Ch.5 Sec. 5.1-5.5

Optimization concepts [FLETCHER2000] Ch.1, Ch.2 Sec. 2.1-2.6

Deep learning [GOODFELLOW2016] Several parts

ii

mailto:stefano.rovetta@unige.it

Contents

1 Introduction 1
1.1 Operators . 1
1.2 Machine learning problems . 2

1.2.1 Supervised learning . 3
1.2.2 Unsupervised learning . 4
1.2.3 ML techniques . 5

1.3 Perceptual problems . 5
1.3.1 Perceptual problems examples . 6
1.3.2 Data cleaning . 8

1.4 Learning problems . 8
1.4.1 Learning scenarios . 8

1.5 Linear threshold classifier . 9
1.5.1 Separable data requirement . 9
1.5.2 Learner model . 10
1.5.3 Activation functions . 11

Lab “zero” . 13

2 Bayesian classification 15
2.1 Probability theory . 15

2.1.1 Distribution and density . 16
2.1.2 Conditional probability . 16
2.1.3 Total probability theorem . 17
2.1.4 Bayes theorem . 17

2.2 Bayesian Decision Theory . 18
2.2.1 Decision and loss . 18
2.2.2 Quality evaluation of discrete decision set . 18
2.2.3 Quality evaluation of continuous decision set . 19
2.2.4 Bayes decision criterion . 20

2.3 Bayesian classifiers . 20
2.3.1 Minimum-error-rate classification . 20
2.3.2 Classifier model . 20
2.3.3 Naive Bayes classifier . 21

Lab Report 1 – Naive Bayes . 23

3 Linear regression 29
3.1 One-dimensional LR . 29

3.1.1 LR as an optimization problem . 30
3.1.2 Solution of the 1D-LR problem . 32

3.2 1D-LR with offset . 33
3.3 The multi-dimensional linear regression problem . 34
3.4 Numerical issues . 36
3.5 Summary . 37
Lab Report 2 – Linear Regression . 38

4 Optimization 45
4.1 Minimization problem . 45

4.1.1 Convex sets and functions . 46
4.1.2 Gradient and Hessian . 47
4.1.3 Minimum and convexity conditions . 48

iii

Contents Contents

4.1.4 Taylor polynomials . 49
4.2 Optimization algorithms . 49

4.2.1 Case 1 - Descent techniques . 49
4.2.2 Case 2 - Newton-Raphson method . 50
4.2.3 Case “1.5” - Hybrid method . 51
4.2.4 Case 0 - Direct search . 51

5 Statistical learning 53
5.1 Statistics & parameter estimation . 53

5.1.1 Models . 53
5.1.2 Model parameter estimation . 55
5.1.3 Learning process . 55

5.2 Parametric methods . 57
5.2.1 Maximum Likelihood parameter estimation . 57
5.2.2 ML and MAP . 58

5.3 Non-parametric methods . 58
5.3.1 Nearest-neighbour classifiers . 59
5.3.2 k-Nearest-Neighbour classifier . 60
5.3.3 Decision trees . 63
5.3.4 Random forests . 64

Lab Report 3 – kNN Classifier . 66

6 Evaluation of classifiers 71
6.1 Estimation of the generalization ability . 71

6.1.1 Statistical learning . 71
6.1.2 Sampling effects . 71
6.1.3 Bias/variance decomposition . 71
6.1.4 How to control generalization? . 72

6.2 Computational (empirical) estimates of generalization . 72
6.2.1 Resampling methods . 72
6.2.2 Cross-validation . 72
6.2.3 Leave-one-out cross-validation . 73
6.2.4 Bootstrap . 74

6.3 Empirical evaluation of classifiers . 74
6.3.1 Contingency tables . 74
6.3.2 Confusion matrix, accuracy and error rate . 74
6.3.3 The dichotomic case . 75
6.3.4 Dichotomic case: more indexes . 76

7 Neural Networks 79
7.1 Brain and Neural Networks . 79

7.1.1 Biological inspiration . 79
7.1.2 Neural Network model . 80

7.2 Single layer neural networks . 83
7.2.1 Rosenblatt’s perceptron (1950s) . 83
7.2.2 Perceptron learning algorithm . 83
7.2.3 Widrow and Hoff’s Adaline (1960) . 85
7.2.4 Adaline learning algorithm (LMS algorithm) . 85
7.2.5 LMS with online learning . 86
7.2.6 LMS algorithm and MSE minimization . 86
7.2.7 Two further steps . 87
7.2.8 The linear separability problem . 87

7.3 Multilayer network . 89
7.3.1 Topologies, UAP and learning . 89
7.3.2 Sigmoid activation function . 90
7.3.3 Differentiability of activation functions . 92
7.3.4 Error back-propagation algorithm . 92
7.3.5 Output activation (softmax) layer for classification 97
7.3.6 Information entropy and cross-entropy loss . 98
7.3.7 Cross-entropy objective with sigmoid activation . 100
7.3.8 Cross-entropy objective with softmax activation . 101

iv

Contents Contents

Lab Report 4 – Neural Networks . 102

8 Deep learning 105
8.1 Depth and internal representation . 105
8.2 Convolutional neural networks . 106

8.2.1 CNN: Convolutional layer . 107
8.2.2 CNN: Pooling layer . 107
8.2.3 CNN: Output layer . 108
8.2.4 Training a CNN . 109
8.2.5 Regularization methods . 109

8.3 Information bottleneck & unsupervised learning . 109
8.3.1 Autoencoders . 110
8.3.2 Denoising autoencoders (DAEs) . 112
8.3.3 Restricted Boltzmann Machines . 112

8.4 Deep Neural Networks . 113
8.4.1 Examples of successful deep networks . 113
8.4.2 Frameworks, languages, libraries . 116
8.4.3 Tain deep networks without supercomputers . 116

David Stuz – Notes on Goodfellow’s “Deep Learning” Textbook 118

v

Contents Contents

vi

Chapter 1

Introduction

How computation meets the brain? Simulating the final result of brain processing (→ Artificial intelli-
gence). In order to simulate the inner mechanics of brain processing we use Artificial neural networks
(NN). Modern machine learning (ML) was mostly developed for neural networks.

For some known task we already have an algorithm: sorting (insert sort, bubble sort, Shell sort, radix
sort, heapsort, bogosort...), spectral analysis of periodic signals (FFT), database filtering (SQL SELECT)
etc... For others we still don’t have any known algorithm (recognizing faces, distinguishing between
genuine works by a given author and fakes, recognizing emotions from gestures or facial expression,
understanding speech, controlling a soft robotic →Sant’Anna’s robot). So, many interesting problems are
too complex to admit an algorithmic solution, or even a complete description. For these problems, only
data are available (nowadays we have lots of data from lots of sources). ML is about using data to solve
problems.

1.1 Operators

We will use vector and matrices in order to represent data (e.g. a pattern can be coded into a vector and
a training set into a matrix). In order to use vector and matrices, we have to define some operators that
state the available operations applicable to them.

Two main operation are defined:

• Vector sum: u ∈ V,v ∈ V ⇒ u + v ∈ V
• Multiplication by a scalar: u ∈ V,a ∈ F ⇒ au ∈ V

and, on real vectors (u ∈ Rd): u = [u1, u2, ..., ud] v = [v1, v2, ..., vd]

• Vector sum: u + v = [u1 + v1, u2 + v2, ..., ud + vd]
• Multiplication by a scalar: au = [au1, au2, ..., aud]

Other operations are possible on real vectors:

• Scalar (inner, dot-) product between two vectors: outputs a scalar and is defined as:

u · v =
∑

i

uivi

• (Euclidean) norm of a vector:

||u|| =
√∑

i

u2i

• (Euclidean) distance between two vectors:

dE(u,v) = ||u− v|| =
√∑

i

(ui − vi)2

1

Chapter 1. Introduction 1.2. Machine learning problems

It is important to note the following 4 properties:

1. ||u|| =
√∑

i(uiui) =
√
u · u

2. u · v = ||u||||v|| cos θ where θ is the angle between u and v.
3. Therefore u · v = 0for orthogonal vectors (cos θ = 0).
4. If ||u|| = 1 and ||v|| = 1, then ||u− v|| = 2− 2v · u

Moreover, we say that u is a linear combination of vectors vi when

u =
∑

i

aivi

We also say that u is a convex combination of vectors vi when

1. u =
∑
i aivi (a linear combination)

2.
∑
i ai = 1 and ai > 0, ∀i

1.2 Machine learning problems

The following scheme includes the main categories of classical machine learning problems:

2

Chapter 1. Introduction 1.2. Machine learning problems

1.2.1 Supervised learning

In supervised learning, an algorithm is employed to learn the mapping function from the input variable
(x) to the output variable (y); that is y = f(x). The objective of such a problem is to approximate
the mapping function (f) as accurately as possible such that whenever there is a new input data (x),
the output variable (y) for the dataset can be predicted.

The main difference between classification and linear regression is that the output variable in regression
is numerical (or continuous) while that for classification is categorical (or discrete).

◦ Regression

In machine learning, regression algorithms attempt to estimate the mapping function (f) from the input
variables (x) to numerical or continuous output variables (y). In this case, y is a real value, which can
be an integer or a floating point value. Therefore, regression prediction problems are usually quantities
or sizes.1

Examples of the common regression algorithms include linear regression, Support Vector Regression
(SVR), and regression trees.

Some algorithms, such as logistic regression, have the name “regression” in their names but they are not
regression algorithms.

Here is an example of a linear regression problem in Python:

import numpy as np
import pandas as pd

importing the model
from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import train_test_split

importing the module for calculating the performance metrics of the model
from sklearn import metrics
data_path = ’’http ://www -bcf.usc.edu/~ gareth/ISL/Advertising.csv’’
loading the advertising dataset
data = pd.read_csv(data_path , index_col =0)
array_items = [’TV’, ’radio’, ’newspaper ’]
#creating an array list of the items
X = data[array_items]
#choosing a subset of the dataset
y = data.sales
#sales

dividing X and y into training and testing units
X_train , X_test , y_train , y_test = train_test_split(X, y, random_state =1)
linearreg = LinearRegression ()
#applying the linear regression model
linearreg.fit(X_train , y_train)
#fitting the model to the training data
y_predict = linearreg.predict(X_test)
#making predictions based on the testing unit
print(np.sqrt(metrics.mean_squared_error(y_test , y_predict)))
#calculating the RMSE number

#output gives the RMSE number as 1.4046514230328955

◦ Classification

On the other hand, classification algorithms attempt to estimate the mapping function (f) from the input
variables (x) to discrete or categorical output variables (y). In this case, y is a category that the
mapping function predicts. If provided with a single or several input variables, a classification model will
attempt to predict the value of a single or several conclusions.2

Examples of the common classification algorithms include logistic regression, Naive Bayes, decision
trees, and K Nearest Neighbors.

1For example, when provided with a dataset about houses, and you are asked to predict their prices, that is a regression
task because price will be a continuous output.

2For example, when provided with a dataset about houses, a classification algorithm can try to predict whether the
prices for the houses “sell more or less than the recommended retail price.”

Here, the houses will be classified whether their prices fall into two discrete categories: above or below the said price.

3

Chapter 1. Introduction 1.2. Machine learning problems

Here is an example of a classification problem that differentiates between an orange and an apple:

from sklearn import tree

Gathering training data

features = [
#[155, ’’rough ’’],
#[180, ’’rough ’’],
#[135, ’’smooth ’’],
#[110, ’’smooth ’’]]
(input to classifier)

features = [[155, 0], [180, 0], [135, 1], [110, 1]]
scikit -learn requires real -valued features

labels = [#’’orange ’’,#’’orange ’’,#’’apple ’’,#’’apple ’’]
(output values)
labels = [1, 1, 0, 0]

Training classifier
classifier = tree.DecisionTreeClassifier ()
using decision tree classifier
classifier = classifier.fit(features , labels)
Find patterns in data

Making predictions
print (classifier.predict ([[120 , 1]]))

Output is 0 for apple

1.2.2 Unsupervised learning

How do you find the underlying structure of a dataset? How do you summarize it and group it most
usefully? How do you effectively represent data in a compressed format? These are the goals of unsu-
pervised learning, which is called “unsupervised” because you start with unlabeled data (there?s no
Yes/No).

The two unsupervised learning tasks we will explore are clustering the data into groups by similarity
and reducing dimensionality to compress the data while maintaining its structure and usefulness.

In contrast to supervised learning, it?s not easy to come up with metrics for how well an unsupervised
learning algorithm is doing. “Performance” is often subjective and domain-specific.

◦ Clustering

Clustering is the task of dividing the population or data points into a number of groups such that data
points in the same groups are more similar to other data points in the same group and dissimilar to
the data points in other groups. It is basically a collection of objects on the basis of similarity and
dissimilarity between them.

For example, the data points in the graph below clustered together can be classified into one single group.
We can distinguish the clusters, and we can identify that there are 3 clusters in the below picture:

Of course, it is not necessary for clusters to be a spherical.

Algorithms developed to implement this technique are, for example, K-mean Clustering and Hierar-
chical Clustering.

◦ Dimensionality reduction

Dimensionality reduction looks a lot like compression. This is about trying to reduce the complexity of
the data while keeping as much of the relevant structure as possible.

4

Chapter 1. Introduction 1.3. Perceptual problems

For example, if you take a simple 128 x 128 x 3 pixels image (length x width x RGB value), that?s 49,152
dimensions of data. If you?re able to reduce the dimensionality of the space in which these images live
without destroying too much of the meaningful content in the images, then you?ve done a good job at
dimensionality reduction.

Algorithms developed to implement this technique are, for example, Principal Component Analysis
(PCA) and Singolar Value Decomposition (SVD).

1.2.3 ML techniques

Be careful though, classical learning is just a subset of the overall machine learning domain:

1.3 Perceptual problems

Perceptual tasks are problems related to perception. They have a typical structure, based on sets of
individual measurements. It is generally difficult to write a program (an algorithm) to solve a perceptual
task, so ML is commonly used in order to learn from data.

Which types of quantities we want to learn? Real values (one or more) or categorical values. Examples
of categorical information are colours (red, green, blue, cyan, magenta, yellow, black ...), names
(Socrates, Plato ...), truth values (True, False), in which there is no natural ordering, only quantitative
information.

5

Chapter 1. Introduction 1.3. Perceptual problems

Type of output
Quantitative Nominal

Super- Yes Regression Classification
vised No Low-dimensional mapping Clustering

1.3.1 Perceptual problems examples

Autonomous robot Consider a wall-following robot that has to make decisions as to the direction to
take, depending on a circular array of ultrasound sensors. The robot has 24 such sensors evenly spread
over 360 degrees. The possible directions are:

Sharp-Left-
Turn

Slight-Left-
Turn

Move-forward Slight-Right-
Turn

Sharp-Right-
Turn

The scitos G5 robot (metralabs.com/en/mobile-robot-scitos-g5/) is a multipurpose, modular platform
for robotic research and development. he ultrasonic sensor?s output is available as a voltage in the range
0→5V. In the following graph we show a the minimum readings from two groups of sensors, on the
forward and on the left. The colors are the solution of a perception problem, and correspond to the
directions to take:

Iris recognition

• The Iris dataset has been in use since 1936
• Collected by botanist Edgar Anderson in 1935
• Used by statistician Sir Ronald A. Fisher in 1936

Sources:

• Edgar Anderson (1935).The irises of the Gaspe Peninsula. Bulletin of the American Iris Society
59: 25.

• Fisher, R.A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugen-
ics 7: 179-188.

It is possible to download it from the University of California - Irvine repository at:
http://archive.ics.uci.edu/ml/datasets/Iris

In this problem, the classes to identify are three:

In the following Table it is possible to see the dataset:

6

https://www.metralabs.com/en/mobile-robot-scitos-g5/
http://archive.ics.uci.edu/ml/datasets/Iris

Chapter 1. Introduction 1.3. Perceptual problems

In the following Figure are shown the graphical representations of the dataset with the respective classi-
fication w.r.t. two of the 4 data types:

But if we multiply the length and height of petals and sepals in order to compute their area, we obtain
a single graph instead:

Now we got a better graph, where classes are clearly separated: this is a feature extraction, a.k.a.
apply a computation to raw data in order to enhance their division in classes.

ML does not need feature extraction, it works with raw data, but data preparation could be very
useful anyway (e.g. data cleaning).

7

Chapter 1. Introduction 1.4. Learning problems

1.3.2 Data cleaning

• Change data types to make them suitable for your software (es. change strings into numerical
codes)

• Remove data with out-of-range values, deal with missing data. For this we have several possible
strategies, like:

Removing observations (rows),
Removing input variables (columns)
Imputation of missing values

• Align timestamped data

1.4 Learning problems

Learning problems are divided in representation (learn to reproduce what is in your data) and gener-
alization (learn to understand what your data represent). Solving the representation problem finds the
best solution for the training set, while solving the generalization problem finds the best solution for
any data from the same source that generated the training set.

• More clearly, generalization in this context is the ability of a learning machine to perform ac-
curately on new, unseen examples/tasks: while classical optimization algorithms can minimize the
loss on a training set, machine learning is concerned with minimizing the loss on unseen samples.

• On the other hand, representation more likely it’s related feature detection, often attempting to
preserve the information in their input but also transforming it in a way that makes it useful (for
example as a pre-processing step before performing classification or predictions).

We define as “learning machine” (or “learner”) not necessarily a real machine, but something that solves
our problem, maybe a software program. We define as “task” the problem to be solved. We don’t have a
description of the problem, but data, so learning will be something like “adjusting quantities inside
the machine” (e.g. algorithm parameters) in order to do a certain task.

We will then define the hypothesis as a specific learning machine that implements a certain task, e.g. a
neural network that reads images and recognizes whether there is a known person (biometric recognition).
The hypothesis space H is the set of all tasks that can be learned by a specific learning machine, e.g.
the set of all classifiers that can be implemented by a specific neural network by setting its internal
parameters. To make it more intuitive, we can say that the hypothesis space is a learning machine before
learning and the hypothesis is a learning machine after learning a task.

1.4.1 Learning scenarios

We have then to define three possible scenarios:

Sc.1 (useful mostly for reasoning):
◦ Learner = hypothesis space = H is fixed
◦ Data are fixed (population)
! Find correct learners in H (a representation task)

Sc.2 (not realizable):
◦ No data necessary: Probabilities are assumed to be known!
! Find best hypotesis space H and optimal learner

Sc.3 (your usual situation):
◦ Data will be stochastic but probabilities are not known
◦ Hypothesis space H fixed, chosen in advance
! Find learners in H which are correct for any possible realization of the data (→ a general-

ization task)

Let’s see now a basic example of classifier in Scenario 1 (we know the whole population).

8

Chapter 1. Introduction 1.5. Linear threshold classifier

1.5 Linear threshold classifier

In a classification task, there exists a line (or a plane if d = 3, or a hyperplane if d > 3) such that object
of a given class are all on the same side of the line/plane/hyperplane.

How we can write a linear equation like y = wx in a general way? If we rewrite it as −wx + y = 0, we
can define two vectors x = [x y] and w = [−w 1] and the general form will be:

x ·w = 0

That, more generally, is a d-dimensional hyperplane (for d = 1 is a straight line). In linear classification
we will use this hyperplane as the learner. This hyperplane will have the following properties:

• Homogeneous ≡ passes through the origin
• The normal vector is w

• Unit-length normal vector is ŵ =
w

||w||
• The positive side is represented by x ·w > 0
• A non-homogeneous hyperplane will have instead an equation like x · w = θ

1.5.1 Separable data requirement

Let’s consider the Logical NAND function (left) and the Logical XOR one (right). Let’s encode it using
two classes (0 and 1):

Consider the Logical NAND (left). We decide to solve using a separating hyperplane (a line in the
2-dim plane): on the positive side there will be one class (the 1, the red square) and on the negative side
the other class (the 0, the blue crosses). From the (left) figure we can easily understand that infinite lines
would solve the problem, and infinite parameter sets represent each equation (only looking at the sign!).
Moreover, even the sign is arbitrarily assigned to the classes.

Consider this time the Logical XOR (right). In this case we don’t have a solution, because it is not a
linearly separable problem → Linear separability assumption

9

Chapter 1. Introduction 1.5. Linear threshold classifier

1.5.2 Learner model

Let’s analyze a learner suited for linearly separable data:

r = x ·w − θ a = f(r)

where:

• x is a d-dimensional vector of input values
• w is the corresponding (d-dimensional) vector of parameters
• · indicates scalar product
• r indicates the net, “integrated” input
• f() is a nonlinear, monotonic activation function
• θ is a threshold
• a indicates the output.

We can then get rid of the threshold:

r′ = r − θ = x ·w a = f(r)

r − θ =

d∑

i=1

wixi − θ = w1x1 + w2x2 + ...+ wdxd − θ

So, now let’s call θ with another name:

θ = −w0x0 , x0 ≡ 1

This will lead to:

r − θ =

d∑

i=1

wixi + w0 =

d∑

i=0

wixi

So, if before θ was a threshold (subtracted), now the term w0 is a bias, and it is summed as an offset
value (r′ is called r anyway):

Why we did this change? Because we like all parameters to be in one place!

Note: now the indexes for the components of x and w start at 0, not 1:

x = [x0, x1, x2, ..., xd] w = [w0, w1, w2, ..., wd]

with w0 = −θ = bias and x0 ≡ 1.

10

Chapter 1. Introduction 1.5. Linear threshold classifier

1.5.3 Activation functions

For the presented classifier we can have different activation functions f(r):

• Heaviside step (defined on [−∞,+∞]→ {0,+1}):

f(r) = 1(r) = step(r) = Θ(r) =

{
+1 r ≥ 0

0 r < 0

(ties broken arbitrarily)

• Signum function (defined on [−∞,+∞]→ {−1,+1}):

f(r) = sign(r) =

{
+1 r ≥ 0

−1 r < 0

The signum function is a symmetrization in the interval [−1,+1] of the Heaviside step function:

sign(r) = 2 step(r)− 1

• Sigmoid or logistic function (defined on [−∞,+∞]→ {0,+1}):

f(r) = σ(r) =
1

1 + e−r

• Hyperbolic tangent (defined on [−∞,+∞]→ {−1,+1}):

f(r) = tanh(r) =
1− e−r
1 + e−r

The hyperbolic tangent function function is a symmetrization in the interval [−1,+1] of the sigmoid
function:

tanh(r) = 2 σ(2r)− 1

Let’s make an example with the already seen Logical NAND function. In this case, as we can see from
the following Figure, a good classifier is the one with w = [0.5, 1, 1] (with red square as positive value):

11

Chapter 1. Introduction 1.5. Linear threshold classifier

12

Chapter 1. Introduction 1.5. Linear threshold classifier

Linear classifier demo
Lab “zero” for the Machine Learning course, EMARO

Abstract—Demo Matlab program with extensive com-
ments

I. MATLAB Implementation
Implementation of a simple, hand-designed linear classifier
Hand-designed means that we don’t learn anything from
the data, we just "invent" a reasonable classifier and see if
it works.
First off, clear workspace (the memory of all variables):

clear

Create a "toy" training set with 10 random points within
the square [1,2]x[1,2] (as class 1) and 10 points in
[0,1]x[0,1] (as class 0)

x = 1 + rand (10 ,2);
x = [x ; rand (10 ,2)]

x = 20 x2
1.54491.5824
1.68621.0707
1.89361.9227
1.05481.8004
1.30371.2859
1.04621.5437
1.19551.9848
1.72021.7157
1.72181.8390
1.87781.4333

Create corresponding vector of targets
t = [ones (10 ,1); zeros (10 ,1)];

Plot data
plot(x(: ,1) ,x(: ,2))

It is not very clear; plot again with suitable style (point
markers rather than connecting lines) and different colors
for different classes...
Plot class 1 in blue crosses:

plot(x(t = = 1 ,1) ,x(t = = 1 ,2) ,’xb ’);

(note indexing with logical expression)
Don’t replace figure, add next plots over old one:

hold on

Plot class 0 in red circles:
plot(x(t = = 0 ,1) ,x(t = = 0 ,2) ,’or ’);

Make sure that axes cover the full possible range;
axis ([0 2 0 2])

Add grid:
grid on

Add figure title;
title (’Demo data ’)

Add axis labels:
xlabel (’ Feature 1’)
ylabel (’ Feature 2’)

Adding plots to the figure is not necessary anymore, so:
hold off

Let’s try classifying with this hyperplane (actually, a
line):

w = [1 1];
y = x*w’ > 0; % classification

Display the number of correctly classified points:
disp(sum(y = = t))

10
...not satisfactory. Let’s plot the data with the classifica-
tion obtained rather than with the correct labels:

13

Chapter 1. Introduction 1.5. Linear threshold classifier

plot(x(y = = 1 ,1) ,x(y = = 1 ,2) ,’xb ’);
hold on
plot(x(y = = 0 ,1) ,x(y = = 0 ,2) ,’or ’);
axis ([-2 2 -2 2])
grid on
title (’Demo data , obtained classification ...

’)
xlabel (’ Feature 1’)
ylabel (’ Feature 2’)

Let’s also plot the hyperplane:
xraster = - 2:.1:2;
plot(xraster , - xraster *w(1)/w(2))
hold off

A bit of geometrical reasoning tells us that we need one
more parameter in the hyperplane, otherwise it will always
cross the origin and the figure shows that this is not ok.
Let’s add a column of all ones to the training set

xx = [ones(size(x ,1) ,1) x];

The coefficient corresponding to the constant column will
be the constant offset in the equation of the hyperplane

ww = [-2 1 1];

Let’s classify with this hyperplane:
yy = linclass (xx ,ww);

This time we use an external function to encapsulate the
classifier, however simple it may be. See file linclass.m
Display the result using a more sophisticated printing
function:

fprintf (’ number of correct classifications...
: % i out of % i total observations \n...
’, ...

sum(yy = = t), size(yy ,1))

number of correct classifications : 20 out of
20 total observations

Much better now. Let’s see the new hyperplane in con-
text:

plot(xx(yy = = 1 ,2) ,xx(yy = = 1 ,3) ,’xb ’);
hold on
plot(xx(yy = = 0 ,2) ,xx(yy = = 0 ,3) ,’or ’);
axis ([0 2 0 2])
grid on
title (’Demo data , obtained classification ...

’)
xlabel (’ Feature 1’) ylabel (’ Feature 2’)
xraster = 0:.1:2;
plot(xraster , - xraster .* ww (2)/ww (3)-ww (1))
hold off

Appendix

function y = linclass (x,w)
% linear threshold classifier
% x: n x m data set to classify
% w: 1 x m coefficient vector of ...

hyperplane
y = x*w’ > 0;
end

% this source code MUST be saved in a ...
separate file named linclass .m

% typing ’help linclass ’ at the prompt ...
will print the three lines of comments

% that follow the function header

14

Chapter 2

Bayesian classification

If with the example of the linear classifier seen in the previous Chapter we where in the Learning Scenario
1, we are now in Scenario 2 (complete (probabilistic) knowledge). So, we will need a brief recall on
probability theory.

2.1 Probability theory

Probability is an expression of uncertainty:

• Frequentist probability: Probability of an event as a generalization of the frequency of occurrence
of that event in infinite repetition of an experiment (trial).

• Subjective probability: Probability of an event as a confidence in the fact that the event itself
will occur, even in a single experiment.

Calling E an event from the set E = {E1, E2, ..., EN} of all possible events (e.g. the outcomes of an
experiment) we will indicate with P (E) the probability of the event E. Then we will have the 3 axioms
of probability:

1. P (E) ≥ 0

2.
∑N
i=1 P (Ei) = 1 or P (E) = 1

3. If Ei are mutually exclusive, then P (Ei ∪ Ej) = P (Ei) + P (Ej)

Then other notable properties can be derived from the axioms:

1. P (E) ≤ 1

2. If E : i are not mutually exclusive, then P (Ei ∪ Ej) = P (Ei) + P (Ej)− P (Ei ∩ Ej)
3. P (Ei ∩ Ej) = P (Ei)P (Ej) for independent events.

Two events are independent if the outcome of one event does not influence the outcome of the second
event. It is the opposite of mutually exclusive.

Example Let’s consider a rolling die:

E = {1, 2, 3, 4, 5, 6}

P (Ei) = P (Ej) ∀i, j
∑

i

P (Ei) = 1⇒ P (Ei) = 1/6 ∀i

P (E < 3) = P (1 ∪ 2) = P (1) + P (2) = 1/3

15

Chapter 2. Bayesian classification 2.1. Probability theory

Example Let’s consider two rolling dice:

E = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

P (10) = P ((4 ∪ 6) ∪ (5 ∪ 5) ∪ (6 ∪ 4))

P (5 ∩ 5) = P (5)P (5) =
1

6

1

6
=

1

36

Then the probability of the other two pairs (and of every other pair) is the same (if they are fair dice).
So:

P (10) = P (4)P (6) + P (5)P (5) + P (6)P (4) = 3
1

36
=

1

12

We can deduce this general law for dice:

P (comb&dice) = num.combinations ·
(

1

6

)num.dice

2.1.1 Distribution and density

Let’s now characterize better the probability:

• Regarding continuous and discrete events, let e indicate any event from a set E . Given a specific
event ê ∈ E (a specific “value” of e), we will call

PE(ê) = P (e < ê)

the (cumulative) distribution function of events in E .

• Regarding only discrete events, let e indicate any event from a numerable set E (e.g. an integer
number in E = {0, 1}. Given a specific event ê ∈ E (a specific “value” of e), we will call

Fg(ê) = P (e < ê)

is the probability mass function of events in E
• Regarding only continuous events, let e indicate any event from a numerable set E (e.g. an real

number in E = {0, 1}. A function fg such that

Pg(ê) =

∫ ê

−∞
fg(e)de

is the probability density function of events in E

The function fg(e) gives the infinitesimal (→ “null”) probability that a random event e has value ê. Its
definite integral on a random interval [ê1, ê2] ∈ E is the finite probability that ê1 < e < ê2.

Intuitively, we can understand that discrete probabilities can be found by “counting”, while continuous
probabilities can be found by “measuring areas”.

2.1.2 Conditional probability

We define the conditional probability as the probability of an event E given the knowledge that another
event F has occurred:

P (E|F)

Let’s take again the dice example. We had P (10) = 1/12. W.r.t. it, if we know that the first dice is 2,
then

P (10|first dice is 2) = 0

while if we know that the first dice is 5, then

P (10|first dice is 5) = 1/6

16

Chapter 2. Bayesian classification 2.1. Probability theory

2.1.3 Total probability theorem

Let’s start with some jargon:

• H is a hypothesis

• {Hi} is a set of alternative hypotheses (H ∈ {Hi})
• X is an experimental observation

• P (H) is the a priori probability of hypothesis H, so, the probability that H is true before seeing
any experimental observation

• P (H|X) is the a posteriori probability of hypothesis H after observing X

• P (X|H) is the likelihood of observing X when H holds (H is verified, it’s true, it’s certain)

• P (X) is the marginal probability of X, the probability of observing X in any case

This theorem states how to compute a marginal probability in a situation like the one illustrated here:

P (X) =
∑

i

P (X|Hi)P (Hi)

2.1.4 Bayes theorem

This theorem gives the probability of a hypothesis after seeing an experimental observation:

P (H|X) =
P (X|H)P (H)

P (X)

There is an alternative form of this theorem, that uses the total probability theorem and does not require
P (X):

P (H|X) =
P (X|H)P (H)∑
i P (X|Hi)P (Hi)

∑
i P (X|Hi)P (Hi) is also known as a partition function.

An important use of probability functions is to compute the “most likely” or expected value of some
random X. In the case of discrete events, it is a weighted sum (where ξi are the possible values of X):

E{X} =
∑

i

ξiFX(ξi)

The symbol E{} is called expectation operator. For real-valued X we have instead:

E{X} =

∫

E

ξfx(ξ)dξ

17

Chapter 2. Bayesian classification 2.2. Bayesian Decision Theory

2.2 Bayesian Decision Theory

2.2.1 Decision and loss

In a decision problem we will have

• c possible, mutually exclusive events, or “states of nature”

{ω1, ω2, ..., ωc}

• s possible actions or “decisions” that we may make

{y1, y2, ..., ys}

• Input: One observation x (feature vector)

• Output: A decision y whose value is one of {y1, y2, ..., ys}
• Reference (target): A true state of nature t whose value is one of {ω1, ω2, ..., ωc}′′

There will be errors in the decision process. To measure the errors we have to define a loss function:

λ(yj |t)

For problems with continuous output, λ it is an actual function, for example:

λ(y|t) = ||y − t||2 ← Squared error loss function

For problems with discrete and finite outputs (classification), it may be a loss matrix:

Λ =

true state of nature t︷ ︸︸ ︷


λ11 λ12 ... λ1c
λ21 λ22 ... λ2c

...
λs1 λs2 ... λsc








decision y

Bayes decision theory (or, ‘classification according to the Reverend Bayes) deals with prediction
based on observed data, for example, a doctor that diagnose a disease after visiting a patient: he
records all observation and measurements into a patient record x. Usually a doctor has some information
available from his medicine textbooks and from his own experience, thanks to which he can determine:

• The incidence of diseases P (ωj)

• The typical and not-so-typical signs and symptoms of diseases P (x|ωj)

Then, from Bayes theorem we know that:

P (H|X) =
P (X|H)P (H)∑
i P (X|Hi)P (Hi)

2.2.2 Quality evaluation of discrete decision set

So, how to evaluate the quality of a single decision? Suppose we have a decision maker, a rule that
receives an observation x and emits a decision y(x) ∈ {y1, ..., yc}. Given x, the decision is fixed by the
decision rule y(x) (a mapping, function ...)

18

Chapter 2. Bayesian classification 2.2. Bayesian Decision Theory

The cost of for the decision y(x) = yi will be defined considering a conditional risk (expected cost of a
single decision, given x):

R(yi|x) =

c∑

j=1

λijP (ωj |x)

This is the expectation of the loss incurred in by deciding (taking action) yi computed over all possible
states of nature ω : j, j = 1...c.

Example Consider a Mars rover. The possible states of nature detected by his sensors will be:

ω ∈ {ω1, ω2, ω3} = {water, solidground, sand}

We will then have their a priori probabilities:

P (ω1) = 0.2, P (ω2) = 0.4, P (ω3) = 0.4

The possible decisions that the rover can make are:

y ∈ {y1, y2} = {roverretract, roveradvance}

We receive an input observation x from the sensors:

x = {groundTouchSens1, groundTouchSens2, groundOptSens, groundWhisker}

We receive x with the correspondent likelihood values (note that likelihoods may not sum up to 1
and that they are not mutually exclusive, so they are not “in direct competition with each other”):

P (x|ω1) = 0.5, P (x|ω2) = 0.9, P (x|ω3) = 0.1

We will have then the following loss matrix:

Λ =

(true state of nature t)︷ ︸︸ ︷


(ω1) (ω2) (ω2)
λ11 λ12 λ13 (y1)
λ21 λ22 λ23 (y2)








(decision y) =

[
0.1 1.0 4.0
2.0 0.1 0.1

]

So, the conditional risk of decision y1 given the previous observation x is:

R(y1|x) =

3∑

j=1

λ : 1jP (ω : j|x) = 0.1 · 0.5 + 1 · 0.9 · 4 · 0.5 = 2.95

while the conditional risk of decision y2 is:

R(y2|x) =

3∑

j=1

λ : 2jP (ω : j|x) = 2 · 0.5 + 0.1 · 0.9 + 0.1 · 0.5 = 1.14

So, when we receive input x, the decision that minimizes the conditional risk is y2.

2.2.3 Quality evaluation of continuous decision set

When the decision is obtained from a deterministic, fixed function y(x), when we have x we also know
the decision y(x). So we can compute the expected cost, where the expectation is taken over all possible
inputs weighted by their probability density:

R =

∫

X
R (y(x)|x) p(x)dx (Expected risk)

19

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

2.2.4 Bayes decision criterion

We can now state the so-called Bayes decision criterion (it’s a theoretically optimal criterion, you can’t
do better than this!):

To minimize R, given an input x the decision rule y(x) should output the decision y that
minimizes the conditional risk R(y(x)|x) as often as possible.

A more precise (operational) version is the following one:

To minimize R, given an input x the decision rule y(x) should output the decision y that
minimizes the expected risk R.

2.3 Bayesian classifiers

2.3.1 Minimum-error-rate classification

Classification is a decision problem with:

s ≡ c {y1, ..., ys} ≡ {ω1, ..., ωc}

I.e., there is no actual decision to take, we are only recognizing the state of nature (the class).

A common loss function for classification is the zero-one loss:

λ(y|t) =

{
0 if y = t

1 if y 6= t

For example, a zero-one loss matrix for a three class problem (c = 3) is:

Λ =




0 1 1
1 0 1
1 1 0




What does the 0-1 loss mean? It means that all types of errors have the same cost (= 1) and that
the correct classifications don?t have a cost. So, R is equal to the expected probability of error (proof:
plug zeroes and ones in the definition of conditional cost). In facto, with the zero-one loss, we have the
so-called minimum-error-rate classification.

2.3.2 Classifier model

But how to design a classifier? A classifier is a rule y() that receives an observation x and outputs a
class ω = y(x). The Bayes decision criterion states that y should minimize R(y(x)|x). A natural idea
would be:

20

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

• Build c blocks or “matched filters” gi, i : 1...c (the discriminant functions) that compute

g1(x) = −R(ω1|x), ..., gc(x) = −R(ωc|x)

• Select ωi that has maximum gi(x)

The decision region is a subset of the data space with a given minimum-conditional-risk decision
(i.e., the decision y is the same for all data in the region). Decision regions are separated by decision
boundaries (or decision surfaces): the decision boundary between two regions (say y = ωi and y = ωj)
are defined by:

gi(x) = gj(x)

In the case of the minimum-error-rate classifier (= using zero-one loss):

gi(x) = −
c∑

j=1,j 6=i
P (ωj |x) = − (1− P (ωi|x)) P (ωi|x) from Total P theorem

Since a classifier is defined by the decision boundaries, we can note that the actual functions
being compared need not be actually gi(x) = R(ωi|x), they can be any monotonic transformation
gi(x) = f(R(ωi|x)) that preserves decision boundaries, for example:

gi = logR(ωi|x) or gi =
1

1 + e−R(ωi|x)

This gives us more freedom in building a classifier! We can use more general scores f(R(ωi|x)) instead
of actual conditional risks R(ωi|x). So, which reasonable discriminant functions we can choose for the
zero-one loss classifier? The following transformation

f(x) = x+ 1

is monotonic and preserves decision boundaries, so we can avoid the useless “−1” term in the previously
seen decision region formulation and have:

gi(x) = 1−
c∑

j=1,j 6=i
P (ωj |x)→ gi(x) = P (ωi|x) (P of ωi given x)

Remember that, for c = 4, we have:

Here we see that if we give the same weight to all errors (0/1 loss) the discriminant functions are simply
the probability of each class given the input – so we take the one with maximum probability!

2.3.3 Naive Bayes classifier

The classifier presented above is a quite sensible classifier due to its sensible criterion (taking the one
with the maximum probability). A popular classifier is the so called Naive Bayes classifier, that is
instead built using “wrong” discriminant functions based on “naive” (or even “idiot”):

• Recall that: x = [x1, x2, x3, ..., xd]

21

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

• So (from Bayes’ theorem):

P (ωi|x) = P (x|ωi)P (ωi) = P (x1, x2, x3, ..., xd|ωi) · P (ωi)

• So, in general we have:
P (a, b|c) 6= P (a|c) P (b|c)

but the naive assumption (wrong) is to consider them independent:

P (x1, x2, ..., xd|ωi) · P (ωi) = P (x1|ω1)P (x2|ω2) . . . P (xd|ωd) · P (ωi)

So, the result is that we have the following boundaries:

gi(x) = P (ωi) [P (x1|ωi)P (x2|ωi) . . . P (xd|ωi)] = P (ωi)

d∏

j=1

P (xj |ωi)

But if it’s an “idiotic” classifier, why we use it? Because of the way how it “learns”, that makes it
particularly handy when features are binary (true/false):

To “learn” P (xk|ωi) it counts how often each value of xk occurs in class !i in the training set.

So we will have:

22

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

Naive Bayes Algorithm Implementation
and Performance Evaluation

Report for the Machine Learning course, EMARO

Davide Lanza
EMARO+ M2
Genoa, Italy

davidel96@hotmail.it

Abstract—In this report we will analyze a MATLAB imple-
mentation of the Naive Bayes Classification technique. After a
short introduction, we will define the theoretical framework in
which we will do our analysis. Considering these assumptions, we
will introduce the Naive Bayes Classifier NBC and we will discuss
our implementation, focusing on the Laplace smoothing variant.
We will estimate then the accuracy of such classifiers w.r.t. a
very small use-case dataset, and a classic, well-known dataset.
Analyzing ad comparing the different results obtained we will
show that Laplace smoothing does not enhance the accuracy –
but it lowers it – when the amount of data is big and uniformly
distributed, while enhance a lot the generalization power of the
learner – reducing the overfitting relative to the train set – for
small size datasets.

Index Terms—Machine Learning, Naive Bayes Classification,
Linear Classification, Laplace Smoothing, MATLAB

I. INTRODUCTION

Thanks to the exponential increase of data available on
the Internet, the volume of information available for perform
machine learning task grows incredibly. Classification tasks –
as the assignment of some input to one or more predefined
categories based on the features it bears – are an important
component in information management tasks.

In this paper, we focus on a specific classification algo-
rithm suitable for probabilistic environments. First, we will
discuss the principles of Bayes Theorem and the Naive Bayes
algorithms. Then we will introduce its implementation on
MATLAB. Finally, the testing results are analyzed, in order
to evaluate the influence of the training-test dataset size ratio
and the Laplacian smoothing factor.

The datasets used for the testing here are “The golf
database” [1, p.521 Fig.1a] and the Jeff Schlimmer’s Mush-
room dataset1 that includes descriptions of hypothetical sam-
ples corresponding to 23 species of gilled mushrooms in the
Agaricus and Lepiota families [2, pp. 500-525].

II. STATE OF THE ART

In this section, we will introduce the theoretical framework
from which we will implement our Naive Bayes Classifier
(NBC). Starting from the specific classification that we will
perform (minimum-error-rate classification), we will introduce

1 Available at https://archive.ics.uci.edu/ml/datasets/mushroom.

the Bayesian classifiers and the so-called “naive assumption”
for the NBC.

A. Minimum-Error-Rate Classification

In a classification problem we will have c classes ωi that
will represent possible, mutually exclusive events or “state of
nature”, an observation that is a vector of f features x =
[x1, ..., xf], and a decision y in output whose value is in the
{ωi|1 ≤ i ≤ c} domain.2

To estimate the errors in the process we need to define a
loss function λ(y|t) that will evaluate the “distance” between
the prediction y ∈ {ωi} and the actual true value t ∈ {ωi}.
Since in classification we will deal with discrete and finite
outputs, we will use a loss matrix:




[y/t] (ω1) (ω2) ... (ωc)

(ω1) λ11 λ12 ... λ1c

(ω2) λ21 λ22 ... λ2c
...

...
. . .

...
(ωc) λc1 λc2 ... λcc


 = Λ (1)

In this report we will adopt a zero-one loss function
λ(y = ωi|t = ωj) = δ−1

ij , 3 a common choice for classification
purposes. Such a function assign to all kinds of errors the same
cost, with null cost for exact prediction. Then, the zero-one
loss matrix is:

Λ =




0 1 ... 1
1 0 ... 1
...

...
. . .

...
1 1 ... 0


 (2)

To evaluate the quality of the classification y given an ob-
servation x we have to define a risk function R(y = ωi|x) that
is the expectation of the loss incurred in by classifying y = ωi

computed over all possible states of nature {ωj |j ≤ i ≤ c}:

R(y = ωi|x) =
c∑

j=1

λijP (ωj |x) (3)

2 In fact, a classification problem is a decision problem for which the
decisions domain {yi} = {ωi}.

3 The δ−1
ij is the inverse of the Kroneker delta δij .

23

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

Since we use a zero-one loss function we are in the so-
called minimum-error-rate classification, that means, the risk
R(y = ωi|x) is equal to the expected probability of error.
Since we deal with expected probabilities, we need probability
theory in order to design our classifier.

B. Bayesian Classifier
Using the Total Probability theorem it is possible to rewrite

the risk function as follows:

R(y = ωi|x) =

c∑

j=1,j 6=i

λijP (ωj |x) = P (ωi|x)− 1 (4)

The Bayes decision criterion [3] states that the prediction y
should minimize the risk function. We can then implement our
classifier with c discriminant functions gi chosen as follows4:

gi(x) = R(y = ωi|x) + 1 = P (ωi|x) (5)

The classifier will then select ωi that has maximum gi(x),
so, thanks t the zero-one loss,it will take the one with maxi-
mum probability.

C. The Naive Assumption
From Bayes’ theorem we that

gi(x) = P (ωi|x) = P (x|ωi)P (ωi) =

= P (ωi)P (x1, x2, x3, ..., xd|ωi) (6)

In general, we have P (a, b|c) 6= P (a|c)P (b|c), but the so-
called “naive assumption” consist in consider them indepen-
dent:

gi(x) = P (ωi)
d∏

j=1

P (xj |ωi) (7)

Given a dataset in the form [x ⇒ t], it is possible to train
such a classifier according to the following rules:

P (ωi) =
countdataset(t = ωi)

size(dataset)
(8)

P (xj = αk|ωi) =
countdataset(xj = αk ∧ t = ωi)

countdataset(t = ωi)
(9)

where {αk} are the values that the observation feature xj
can assume.

III. IMPLEMENTATION

A. Canonical NBC
We have a dataset composed by a set of o observations

X = {xi|1 ≤ i ≤ o} and by the respective truth values
t = {ti|1 ≤ i ≤ o} such that ∆ = [X, t]:

∆ =

x
(1)
1 x

(1)
2 · · · x

(1)
f t1

x
(2)
1 x

(2)
2 · · · x

(2)
f t2

...
...

. . .
...

...
x

(o)
1 x

(o)
2 · · · x

(o)
f to

(10)

4 Since a classifier is defined by the decision boundaries gi(x) = gj(x),
the actual functions can be any monotonic transformation that preserves
decision boundaries.

Figure 1: Graphical representation of PA tensor.

Since every feature will assume a limited number of values,
we defined an alphabet set A = {αi|0 ≤ i ≤ a} of a attributes
that will code each feature value.5 Then, defining Ω = {ωi|1 ≤
i ≤ c} we will have:

xi ∈ A , ti ∈ Ω (11)

Using a part test-train dataset ratio of 1 : 4,6 the classifier
is trained with ∆train = [Xtrain, ttrain] ⊂ ∆. The NBC
knowledge is represented by a vector PΩ and by a three-
dimensional tensor PA:

PΩ =
[
P (ω1) P (ω2) · · · P (ωc)

]T
(12)

PAij
=
[
P (xj = α1|ωi) · · · P (xj = αa|ωi)

]T
(13)

PA =




PA11 ... PA1f

PA21
... PA2f

...
. . .

...
PAc1

... PAcf


 (14)

The training process that computes the values of the two
matrices is described in Algorithm 1. After the training,
using the knowledge NBC= [PΩ, PA] we are able to perform
predictive classification on the dataset. Receiving in input
an observation x, the NBC will decode it by means of the
alphabet A (from attributes αk to the indexes k) and it
will compute the discriminant functions in order to extract
a prediction y (Algorithm 3).

B. NBC with Laplace Smoothing

The training Algorithm 1 is not perfect, and it has to be
smoothed, because it initialize to 0 the probabilities in PA

for features unseen in ∆train
7. Not only, also the prediction

Algorithm 3 presents this problem related to unseen features.
For sake of simplicity, we will analyze a simple case. Let’s
say that after the training, the NBC would be able to predict
two classes ω1, ω2 with 50 : 50 probabilities. Now, consider

5 This leads to have a = max
features

(different feature values) and then to
have some null values in the probability tensors, but it simplifies a lot the
implementation.

6The single instances for each fold are randomly selected by means of
MATLAB function cvpartition.

7That is a consequence of choosing a single coding alphabet A for all the
features with size a.

24

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

an observation x = [x1, ..., xf] which NBC rates very highly
as ω1, let’s say P (x|ω1) = 0.99 and P (x|ω2) = 0.01. If
we consider another observation x̄ = [x1, ..., x̄, ..., xf] that is
exactly the same as x except for the feature x̄ expressing an
unseen attribute, we will have Nx̄,ωi

= 0 since there were
no examples of x̄ value in ∆train. Then, suddenly we would
have:

P (x̄|ωi) = Nx̄,ωi/Nωi = 0 (15)

P (x̄|ω1) = P (x|ω1)P (x̄|ω1) = 0.99 · 0 = 0 (16)

P (x̄|ω2) = P (x|ω2)P (x̄|ω2) = 0.01 · 0 = 0 (17)

Despite x being strongly classified as ω1, x̄ may be classi-
fied differently because x̄ feature value provides a correspond-
ing zero probability. A first solution to this problem would be
to exclude the zero-valued probabilities from the prediction
process, that is, basically, to assign a 1 to their probability.
This will result in enhancing the weight of the a priori values
PΩ in the product seen in Equation 7 (see Algorithm 4).

This a priori solution is not the most general one, and could
overweight the a priori probabilities ignoring the data (if a
certain feature never assumed a specific attribute value along
the entire dataset probably its probability will be almost 0, not
1). For this reason, implement Laplace smoothing allows us to
give to unseen features a small non-zero probability for both
classes, so that the posterior probabilities don’t suddenly drop
to zero, without over-weighting the a priori probabilities. To
implement it in Algorithm 1 we should modified it inserting
a smoothing factor ` (see Algorithm 2). During the training
then has to be computed also a default probability vector that
will be used when the feature values will be some attributes
not included in the alphabet A:

Pd =



`/(Nω1 + c `)

...
`/(Nωc

+ c `)


 (18)

This default value will be useful during the prediction phase
as shown in Algorithm 5. If we want to interpret qualitatively
the action of the Laplace smoothing, we can notice that, on
one hand, a value ` > 1 means lower probabilities Pd and in
the PA tensor, so this will result in trusting more the a priori
belief rather than the training data. On the other hand, a value
` < 1 means higher probabilities Pd and in the PA tensor, so
this will result in trusting more the training data rather than
the a priori belief.

IV. PERFORMANCE EVALUATION

The datasets used for the testing here are “The golf
database” [1, p.521 Fig.1a] and the Jeff Schlimmer’s Mush-
room dataset that includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the
Agaricus and Lepiota families [2, pp. 500-525]. The test were
k-fold cross validation, with a k = 3 value (due to the
small amount of samples of the first dataset). The dataset
tested was ∆test = ∆ − ∆train, but every time MATLAB’s
cvpartiton function composed the test and training sets
randomly.

A. The Golf Dataset

Outlook Temperature Humidity Windy Play
overcast hot high FALSE yes
overcast cool normal TRUE yes
overcast mild high TRUE yes
overcast hot normal FALSE yes
rainy mild high FALSE yes
rainy cool normal FALSE yes
rainy cool normal TRUE no
rainy mild normal FALSE yes
rainy mild high TRUE no
sunny hot high FALSE no
sunny hot high TRUE no
sunny mild high FALSE no
sunny cool normal FALSE yes
sunny mild normal TRUE yes

Table 1: The golf dataset [1]

Since this dataset contains only 14 samples, in order to
achieve generalized results it has been trained and tested
for 10000 iterations (each time the ∆ sets were randomly
assembled). This high number of samples allowed to have
an average accuracy with 10−2 precision. A confusion matrix
has been plotted in order to summarize and visualize the
result. The one in Figure 2 is the one corresponding to the
NBC without Laplace smoothing, while the one in Figure 3
is the one corresponding to the NBC with a l = 1 Laplace
smoothing. The full results are available in Table 2, where the
accuracy values w.r.t. ∆train and ∆test as test sets (of a NBC
trained on ∆train) is the ratio between the positive results and
the total number of experiments (iterations·size(dataset)).

n y
Predicted Class

n

yT
ru

e
C

la
ss

Pred. on Training Set (Acc. = 0.89319)

33195

3876

6805

56124

n y
Predicted Class

n

yT
ru

e
C

la
ss

Pred. on Test Set (Acc. = 0.64425)

5698

9928

4302

20072

Figure 2: Golf dataset: Confusion matrix for the canonical
NBC.

n y
Predicted Class

n

yT
ru

e
C

la
ss

Pred. on Training Set (Acc. = 0.84259, l = 1)

24519

260

15481

59740

n y
Predicted Class

n

y

T
ru

e
C

la
ss

Pred. on Test Set (Acc. = 0.71188, l = 1)

2994

4519

7006

25481

Figure 3: Golf dataset: Confusion matrix for the NBC with
Laplace smoothing (l = 1).

B. The Mushroom Dataset

Since this dataset contains 8124 samples, it is possible to
achieve generalized results with a single iteration. A confusion
matrix has been plotted in order to summarize and visualize

25

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

l Train accuracy Test accuracy
@ 0.8940 0.6458
0 0.8922 0.6461
0.2 0.8903 0.6832
0.4 0.8745 0.6899
0.6 0.8593 0.7064
0.8 0.8466 0.7089
1 0.8438 0.7189
1.2 0.8320 0.7150
1.4 0.8243 0.7266
1.6 0.8111 0.7275
2 0.7959 0.7389
3 0.7747 0.7680
5 0.7268 0.7684
7 0.6845 0.7578
10 0.6362 0.7507
100 0.6000 0.7500
1000 0.6000 0.7500

Table 2: Golf dataset: Accuracy for testing ∆train and ∆test

w.r.t. Laplace smoothing (the first line refers to the canonical
NBC)

the result. The one in Figure 4 is the one corresponding to
the NBC without Laplace smoothing, while the one in Figure
5 is the one corresponding to the NBC with a l = 1 Laplace
smoothing. The full results has been computed this time with
100 iterations, and are available in Table 3.

e p

Predicted Class

e

p

T
ru

e
C

la
ss

Pred. on Training Set (Acc. = 0.99705)

3

132792

2608

e p

Predicted Class

e

p

T
ru

e
C

la
ss

Pred. on Test Set (Acc. = 0.99594)

111392

13050

Figure 4: Mushroom dataset: Confusion matrix for the canon-
ical NBC.

e p
Predicted Class

e

p

T
ru

e
C

la
ss

Pred. on Training Set (Acc. = 0.94387, l = 1)

296

82797

2315

e p
Predicted Class

e

p

T
ru

e
C

la
ss

Pred. on Test Set (Acc. = 0.94092, l = 1)

159

11402

1146

Figure 5: Mushroom dataset: Confusion matrix for the NBC
with Laplace smoothing (l = 1).

V. CONCLUSIONS

From the analysis performed on the designed system, we
confirm that NBC is a sound learner for a discrete, consistent
and big datasets as the Mushroom one. For these kinds of
datasets, Laplace smoothing does not enhance the accuracy,
but it lowers it (Table 3). It has to be noted though that in
the Mushroom dataset used, all the attributes of the received
observations were probably already in the alphabet A. For a
small dataset, instead, Laplace smoothing enhanced a lot the

l Train accuracy Test accuracy
@ 0.9971 0.9968
0 0.9971 0.9969
0.2 0.9658 0.9650
0.5 0.9526 0.9517
1 0.9447 0.9443
2 0.9392 0.9386

Table 3: Mushroom dataset: Accuracy for testing ∆train and
∆test w.r.t. Laplace smoothing (the first line refers to the
canonical NBC)

generalization power of the learner, reducing the overfitting
relative to the train set. From Table 2 we can notice how
around l = 5 the accuracies w.r.t. the test and the training sets
are almost equal. That is a good achievement regarding these
kind of problems, where huge amounts of data are unavailable.

VI. FUTURE WORK

Regarding the Mushroom case-study analysis, a better way
to estimate the performances of Laplace smoothing would
be using a ∆test with a significant number of attributes not
included in A, because here the data in ∆ were quite uniformly
distributed. Regarding the Golf case-study analysis, size(∆) =
14 is definitely too little in order to draw a conclusion w.r.t.
small size datasets. Further analysis should test bigger datasets,
comparing different size(∆) = 10i, 0 ≤ i ≤ 4. Regarding the
general architecture implemented here and the algorithms pro-
vided, loop unrolling would decrease significantly estimation
time. Using dynamic-size matrix instead of a tensor whose
third dimension size is fixed to a is not the best saving-space
solution.

REFERENCES

[1] L. C. Rivero, J. H. Doorn, and V. E. Ferraggine, Hand-
book of Research on Innovations in Database Tech-
nologies and Applications: Current and Future Trends.
Hershey, PA, USA: IGI Global, 2009, ISBN: 978-1-605-
66243-5.

[2] G. Lincoff, National Audubon Society Field Guide to
North American Mushroom. NewYork, NY, USA: Alfred
A. Knopf, 1981, ISBN: 978-0-394-51992-0.

[3] R. O. Duda, E. H. Hart, and D. G. Stork, Pattern
Classification, 2nd. New York, NY, USA: John Wiley
& Sons, 2001, ISBN: 978-0-471-05669-0.

APPENDIX

Algorithm 1 BNC Training (Canonical)

Require: ∆train, A,Ω
PΩ, PA initialize to 0
N = count rows(∆train)
for i = 1→ c do

maski = {[x(m) tm] ∈ ∆train | tm = ωi}
Nωi

= count rows(maski)
PΩ(i) = Nωi

/N
for j = 1→ f do

for k = 1→ a do
maskk = {[x(m) tm] ∈ maski | x(m)

j = αk}

26

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

Nxk,ωi
= count rows(maskk)

PA(i, j, k) = Nxk,ωi/Nωi

end for
end for

end for
return PΩ, PA

Algorithm 2 BNC Training (Laplace smoothing)

Require: ∆train, A,Ω, `
PΩ, PA initialize to 0
N = count rows(∆train)
for i = 1→ c do

maski = {[x(m) tm] ∈ ∆train | tm = ωi}
Nωi

= count rows(maski)
PΩ(i) = Nωi

/N
Pd(i) = `/(Nωi

+ c `)
for j = 1→ f do

for k = 1→ a do
maskk = {[x(m) tm] ∈ maski | x(m)

j = αk}
Nxk,ωi

= count rows(maskk)
PA(i, j, k) = (Nxk,ωi

+ `)/(Nωi
+ c `)

end for
end for

end for
return PΩ, PA, Pd

Algorithm 3 NBC Prediction (Canonical)

Require: x, PA, PΩ, A,Ω
for i = 1→ c do
gi(x) = PΩ(i)
for j = 1→ f do

if xj ∈ A then
k = Decode(xj , A)
gi(x) = gi(x) PA(i, j, k)

else
gi(x) = 0

end if
end for

end for
y = ωi s.t. maxi(gi(x))
return y

Algorithm 4 NBC Prediction (a priori version)

Require: x, PA, PΩ, A,Ω
for i = 1→ c do
gi(x) = PΩ(i)
for j = 1→ f do

if xj ∈ A then
k = Decode(xj , A)
if PA(i, j, k) 6= 0 then
gi(x) = gi(x) PA(i, j, k)

end if
end if

end for
end for
y = ωi s.t. maxi(gi(x))

return y

Algorithm 5 NBC Prediction (Laplace smoothing)

Require: x, PA, PΩ, Pd, A,Ω
for i = 1→ c do
gi(x) = PΩ(i)
for j = 1→ f do

if xj ∈ A then
k = Decode(xj , A)
gi(x) = gi(x) PA(i, j, k)

else
gi(x) = Pd(i)

end if
end for

end for
y = ωi s.t. maxi(gi(x))
return y

27

Chapter 2. Bayesian classification 2.3. Bayesian classifiers

28

Chapter 3

Linear regression

If in the previous cases we where in Scenario 1 and 2, we are now in Scenario 3 (only data are available).

The situation is like an election prediction: in that case we don’t have probabilities because of the high
level of complexity of human behavior interpretation. In this situation, since the data will be stochastic
and probabilities are not known the hypothesis space H will be chosen in advance. We will have to
find then the best hypothesis for any possible realization of the data (→ generalization task).

This is our usual situation, since now on we will work in this scenario.

In this Chapter1 we will solve a regression problem, so we will approximate a functional dependency
based on measured data (a typical supervised problem).

The data will be represented as:

Observations =




x1

x2

...
xN


 Target =




t1
t2
...
tN




We will start from the one dimensional linear regression (1D-LR) in order to present then the variant
with offset and the multidimensional variant (nD-LR)

3.1 One-dimensional LR

Let’s say that we want to predict the variation of the MSCI European index by observing Standard and
Poor’s 500 return index. So we have these 249 observations made in year 2010 (Source: UCI):

• Observation: x is the value of the variation of Standard and Poor’s (SP) 500 return index on a
given day.

• Target: t is the value of the variation of the MSCI European index (MSCI) on the same day.

→ There is clearly some relationship between the two values, but not one-to-one.

1See either (or both) of [HASTIE2009] and [BISHOP2006] as reference.

29

Chapter 3. Linear regression 3.1. One-dimensional LR

A linear model for approximating the data y(x) has to predict t given x:

t ' y where y = wx

For instance :
t1 ' y1 where y1 = wx1 t2 ' y2 where y2 = wx2

So we want y(x) to be similar to t(x) for any x. Let’s compute the parameter w then:

x1 = 0.0159⇒ y1 = 0.0159 · w must approximate t1 = 0.0167

So:

w =
0.0167

0.0159
= 1.0503

However,
x2 = 0.031⇒ y2 = 0.0159 · w must approximate t2 = 0.0013

So:

w =
0.0013

0.0031
= 0.4194

So, clearly this is not the best way to do it → we have to solve an optimization problem.

In fact, just consider the first 10 days of 2011:

We will have:

Here is clear the need for an optimization problem solution.

3.1.1 LR as an optimization problem

As we saw, we cannot hope to find a value for w that is good for all points. We should be satisfied with
a value which is generally not so bad for most of the points. More rigorously:

The expected (average) error should be low.

The idea is to quantify how wrong is each estimate using some measure, and make this measure as
small as possible on average.

The so-called “measure” will be the loss function. which are the properties of a good loss?

30

Chapter 3. Linear regression 3.1. One-dimensional LR

• All errors give a positive contribution:

λ(t, y) = λ(−t,−y).

• λ has to be differentiable

Let’s consider some options:

• Error λE(t, y) = t− y → is not an even function!

• Absolute error λAE(t, y) = |t− y| → is not differentiable!

• Square error λSE(t, y) = (t− y)→ that is the simplest option that fits, in fact:

– is even: (t− y)2 = (y − t)2

– grows more than linearly, giving heavier weight to larger errors

– is differentiable with respect to the model output:

d

dy
λSE(t, y) = 2(y − t)

The objective function (or cost function) J will reflect our generic goal of minimize the mean value of
the loss over the whole data set:

J =
1

N

N∑

i=1

λ(tl, yl)

In the specific case of the square error loss we have JMSE , that is the mean square error objective function:

J =
1

N

N∑

i=1

(tl, yl)
2

Since loss function λ(t, y) is a function of the two arguments t and y, we can look at the objective in two
complementary situations:

• Build the model: given the data set, the targets t1, ..., tN are fixed → the objective depends only
on the model parameter(s): given the values of y you change the value of w, it’s the learning
part: the objective is a function of the parameters in the model and the data are fixed

• Use the model: given a model, the parameters are fixed. However we can apply this model to
various data set→ the objective depends only on the data: once you fixed one of these hypothesis
you “freeze” w and you have your model, then you’ll have this inference part: the objective is a
function of the data, which uses the (now fixed) model parameters

31

Chapter 3. Linear regression 3.1. One-dimensional LR

3.1.2 Solution of the 1D-LR problem

Let’s see now some methods in order to obtain the solution to the 1D-LR problem.

The least squares method The problem for this method is to minimize JMSE with respect to the
parameters with fixed data. We know that JMSE is a parabola, hence we have a unique solution:

w s.t.
d

dw
JMSE = 0

This is a necessary but generally not sufficient condition, but in this case it is a parabola, so, it is
also necessary.

How to compute d
dwJMSE? Since y = wx

d

dw
λSE(t, y) =

d

dy
λSE(t, y)

d

dw
y

The only variable is w, the rest is fixed:

This equation is solved by bringing w outside the sum, since it does not depend on l:

Why it’s a a linear equation even if there is a square? Because it is a square of a constant value, because
it’s data, not a variable.

This is the least square solution to the linear regression problem. You should not aim to solve it for
perfect data, you’ll never have it. For our example:

32

Chapter 3. Linear regression 3.2. 1D-LR with offset

For two different subsets of data:

3.2 1D-LR with offset

Considering the “1974 ‘Motor Trends’ car data (four columns)”, that contains the result of a 1974 survey
on some car models. mpg is miles-per-gallon, disp is displacement (in cu.in), hp is horse-power and weight
is the total weight given in lbs/1000 (note that these are USA units):

If we forecast mpg with weight we obtain this set on which use linear regression:

33

Chapter 3. Linear regression 3.3. The multi-dimensional linear regression problem

But now let’s introduce a more flexible model adding an offset:

The solution in this case can be found by centering around the mean x̄ of x and t̄ of t:

Here, w1 is the slope (gain) and w0 the intercept, the offset (bias).

With this flexible model we’re allowed to have solutions like:

We have switched from a linear to an affine model y = w0 + xw1.

3.3 The multi-dimensional linear regression problem

The data is now composed of d-dimensional vectors:

so we can organize them into a N × d matrix:

34

Chapter 3. Linear regression 3.3. The multi-dimensional linear regression problem

Since the data are now d-dimensional, we have d parameters in a d-dimensional vector:

The linear model takes the d inputs of each observation and combines them by using the d parameters
to produce one output:

This can be expressed as a matrix-vector multiplication between the data matrix X and the parameter
vector w:

Finally, our goal is to make this model y as similar as possible to the measured outputs for each obser-
vation, which again can be organized as a vector, this time N -dimensional:

We will have then the square error objective in matrix-vector form:

We can simplify the objective by disregarding the constant term 1
2 ||t||2:

35

Chapter 3. Linear regression 3.4. Numerical issues

This is a paraboloid, a d-dimensional parabola, in the variables w. It has a minimum when

But how we reach the closed-form solution? It can be proven that we can write:

By premultiplying both sides by (XTX)−1, we obtain the closed-form solution:

w = (XTX)−1XT t

that is the matrix form of the normal equations for the least squares problem. This one matrix
equation is equivalent to a system of d+ 1 simultaneous equations in d+ 1 unknowns. Checking the
dimensions, everything works:

X is (N × d) and XTX is square (d+ 1)× (d+ 1).

(XTX)−1XT = Moore-Penrose pseudoinverse of X = X†

→ w = X†t

So, once we have solved a linear regression problem, we have received a new point x∗ and we want to
obtain the value y∗ that estimates the most probable value of the output, how do we proceed?
This is inference and works simply like this:

y∗ = w∗ · x∗

3.4 Numerical issues

There are some numerical issues related to this method:

• XTX might not be invertible. This is when the data have exactly linearly dependent components

• What if the variables are correlated?

• Even if XTX has full rank, in the case of correlated variables it will have a high condition

number
λfirst
λlast

• It can be difficult to invert (numerical precision must be too high)

• This is a problem of numeric instability: even very small numeric errors are amplified by the
condition number and cause large errors on the result

⇒ SOLUTION: Iterative computation by successive approximations (e.g., by gradient descent)

36

Chapter 3. Linear regression 3.5. Summary

3.5 Summary

• Linear regression – an example of simple learning problem: forecast one continuous variable using
observations (= one or more other variables) related to it

• Univariate linear regression: forecasting the most likely value of the target variable t as a linear
function y = w1x+ w0 of the observed variable x

• The problem is a system of N linear equations in two unknowns w1, w0 – in general no solution

• Solved by minimizing an objective function that is the expectation of a chosen loss function

• We used the square error loss obtaining the mean square error objective

• The problem admits a closed-form solution

• Multivariate linear regression: Forecasting the most likely value of the target variable t as a linear
function y = w · x of the observed vector variable x

• The problem is a N × (d + 1) system of linear equations (N equations in d + 1 unknowns w – in
general no solution if d+ 1 < N)

• Again solved by minimizing the mean square error objective function

• The problem admits a closed-form solution using the Moore-Penrose pseudo-inverse

• However this solution may not exist or be low-quality due to numeric instability

• Iterative approximation methods exist (e.g., by gradient descent)

37

Chapter 3. Linear regression 3.5. Summary

Linear Regression Implementation
and Performance Evaluation

Report for the Machine Learning course, EMARO

Davide Lanza
EMARO+ M2
Genoa, Italy

davidel96@hotmail.it

Abstract—In this report will be analyzed a MATLAB imple-
mentation of the Linear Regression technique. After a short
introduction, we will define the theoretical framework from which
we derived our implementation, focusing on the variant with
offset. We will estimate then the accuracy of such regressors
w.r.t. a big and small datasets. Analyzing ad comparing the
different results obtained for the mono- and multi-dimensional
case, we will show that the offset variance lowers the error, but
significantly only for small or unbalanced datasets.

Index Terms—Machine Learning, Linear Regression, MAT-
LAB

I. INTRODUCTION

Thanks to the exponential increase of data available on
the Internet, the volume of information available for perform
machine learning task grows incredibly. Regression tasks –
as the approximation of a functional dependency based on
measured data – are an important component in information
extraction and for predictive tasks.

In this paper, we focus on a specific regression method: the
linear one. First, we will discuss the theoretical framework
from which we derived our MATLAB implementation, then
we will test it w.r.t. a high-dimension dataset and a low-
dimension dataset regarding mono-dimensional linear regres-
sion problem, and w.r.t. a low-dimension dataset regarding
multi-dimensional linear regression problem. Finally, the test-
ing results are analyzed, in order to evaluate the influence of
the training-test dataset size ratio and the incidence of the
presence of an offset in the regressor.

The datasets used in this study are two. The first one is a
high dimensional dataset and it is the Istanbul Stock Exchange
dataset1, which includes the returns of Istanbul Stock Ex-
change (BIST) with seven other international index (SP, DAX,
FTSE, NIKKEI, BOVESPA, MSCE EU, MSCI EM) from
Jun 5, 2009 to Feb 22, 2011 Balaban2013. The second one is a
low dimensional dataset extracted from the 1974 Motor Trend
US magazine, comprising fuel consumption and 10 aspects of
automobile design and performance for 32 automobiles.2.

1 Available at https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK
+EXCHANGE.

2 It is the mtcars dataset of R.

II. IMPLEMENTATION

In this section, we will present the theoretical framework
from which we have implemented our Linear Regressor (LR).
Starting from the Multidimensional LR problem statement we
will the introduce the modified solution with offset (MLR-O).

A. Problem statement

In a regression problem we want to approximate a functional
dependency t = f(x) with a LR that provides y = LR(x)
with the output y as much close as possible to the target t. In
order to train the LR, we will have a dataset of o observations,
each one is a vector of f features x = [x1, ..., xf]T (if f = 1
we will have a one-dimensional linear regression problem t =
f(x)). The LR is built in the following way

LR(x) = [w1, ..., wf] · x = wT · x (1)

where w is a column vector of parameters that divides each
i-th dimension’s plane {xi, y} with a line y = wixi passing
through the origin (in fact, for one-dimensional cases f = 1
the LR is an actual straight line following as much as possible
the distribution of observations in the function plane {x, y}).

B. Loss function and training equation

Since we cannot hope to find a value for w that is good for
all points, ee have to define a loss function λ(t, y) in order to
minimize the expected (average) error. Since a good λ should
be even, should grow more than linearly (in order to weight
more bigger errors) and should be differentiable, we chase the
Square Error one:

λSE(t, y) =
1

2
(t− y)2

Given a dataset composed by a set of o observations X =
{x(i)T |1 ≤ i ≤ o} and respective truth values t = {ti|1 ≤
i ≤ o} such that ∆ = [X, t]

∆ =

x
(1)
1 x

(1)
2 · · · x

(1)
f t1

x
(2)
1 x

(2)
2 · · · x

(2)
f t2

...
...

. . .
...

...
x
(o)
1 x

(o)
2 · · · x

(o)
f to

(2)

38

Chapter 3. Linear regression 3.5. Summary

the goal is to minimize the mean value of λSE(t, y) over all
the losses of each sample {x(i)T , ti} of the dataset, given the
outputs yi = LR(xi):

JMSE(∆) =
2

o

o∑

i=1

(ti − yi)2 =

=
2

o

o∑

i=1

(ti −wTx(i))2 =
2

o
(t−Xw)2 (3)

Due to the quadratic nature of the minimization problem, the
following necessary condition for the existence of a minimum
is also sufficient:

∂

∂y
JMSE(∆) =

1

o
XT (t−Xw) = 0 (4)

We can then obtain the following training equation for the
MLR:

w =
XT

XTX
t = X†t (5)

where X† is the Moore-Penrose pseudoinverse
Moore1920Penrose1955.

C. MLR with offset

To obtain a more sophisticated MLR, for which the lines
each the dimension of the hyperspace does not necessarily
pass through the origin. In this case, we have an additional
term

LR-O(x) = [w0, w1, ..., wf] ·
[

0
x

]
= wT · x + w0 (6)

For the MLR-O the training equation have to be centered
around the mean 〈x〉 of x and 〈t〉 of t

〈x〉 =
1

o

o∑

i=1

x(i) 〈t〉 =
1

o

o∑

i=1

ti (7)

Xc = X −



〈x〉T

...
〈x〉T


 tc = t−



〈t〉
...
〈t〉


 (8)

so the equations are:
w = X†

c t (9)

w0 = 〈t〉 −wT · 〈x〉 (10)

III. PERFORMANCE EVALUATION

The MLR-O has been tested for a one-dimensional problem
on the Istanbul Stock Exchange data using the SP index as
observation and the MSCE EU index as target, for a one-
dimensional problem on the Motor Trends car data using the
car’s weight as observation and the mpg (miles/gallon) as
target, and for a multi-dimensional problem on the complete
Motor Treend cars data, using three columns (displacement,
horsepower and weight) in order to predict the mpg.

The solution have been obtained on different random subsets
of the whole data set. The training-test ratio has been tried for
1 : 9, 7 : 1 and 9 : 1 values, preparing the training and test set

Algorithm 1: Dataset preparation

Require: ∆, nfolds, ntrain
∆train,∆test = ∅
folds = Split(∆, nfolds)
indexes = Randperm(nfolds)
for i = 1→ ntrain do

Append(folds(indexes(i))) to ∆train

end for
for i = ntrain + 1→ nfolds do

Append(folds(indexes(i))) to ∆test

end for
return ∆train,∆test

dataset as shown in the Algorithm 1, in order to preserve the
temporal order of the subsequent samples (significant choice
for the stock index case).

The performance has been evaluated computing the mean
square error JMSE(∆train) and JMSE(∆test) between pre-
diction y and the target t after the training on ∆train. In
Appendix can be found the results for each case, in which the
the LR has been tested for 10000 iterations, and the error in
the graph has been successively averaged with the previous
values in order to show the convergence of the average for
each case.

A. LR on SP-MSCE EU

Considering the case without offset for which the training-
test ratio is 1:9 (LR trained on 10% of ∆), the error is low
w.r.t. the training set, because the samples are less w.r.t. ∆,
then find a line that will fit them will be easier than for the
complete dataset. This leads to very different LR depending
on the ∆train used, as it is possible to see from the two cases
in Figure 1 and in Figure 2, where two different ∆train have
been chosen (the red samples) along ∆ (the blue dots).

Of course, a small training ratio as the 10% will lead to
serious problems of overfitting and poor generalization, that
is, a low error while testing ∆train and a great error in
testing ∆test. In this case though, the dataset is big enough
to avoid it, as it is possible to see from the results reported
in Table 1, where JMSE has been averaged on the 10000
iterations performed. In the Table are reported also the results
for the LR-O version of the classifier, that seems to lowly
enhance overfitting for low train ratios and lowly enhance
generalization for high ratios.

Testing on ∆train : ∆test 〈J〉 for LR 〈J〉 for LR-O

∆train 1 : 9 8.6319 · 10−5 8.4453 · 10−5

∆test 9.397 · 10−5 9.4914 · 10−5

∆train 7 : 3 8.9178 · 10−5 8.926 · 10−5

∆test 9.1509 · 10−5 9.0654 · 10−5

∆train 9 : 1 8.9608 · 10−5 8.9703 · 10−5

∆test 8.9716 · 10−5 8.829 · 10−5

Table 1: Average MSEs for 1-D problem (SP-MSCE EU)

39

Chapter 3. Linear regression 3.5. Summary

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Training on 10% - Test on training set (error = 3.8741e-05) - No Offset

Complete dataset
Train Dataset
Regressor

Figure 1: LR plot for 1D problem (SP-MSCE EU)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Training on 10% - Test on training set (error = 0.0002485) - No Offset

Complete dataset
Train Dataset
Regressor

Figure 2: LR plot for 1D problem (SP-MSCE EU)

B. LR on MT Trends

For this low-dimension dataset, considering the case with
offset for which the training-test ratio is 1:9 (training on 10%
of ∆), the effect hypothesized for the previous case is strong
and clearly visible in Figure 3 and in Figure 4, where the two
LR-O are strongly different.

This has consequences that are clearly notable on the 10000
iterations results reported in Table 2, where a strong overfitting
is notable for the 1 : 9 case (training on only 3 samples along
32). The two error averages are almost balanced only for the
9 : 1 case, for which, in the LR case, the final value is high.
The offset here drastically enhance the results for each case,
as reported in the Table.

Testing on ∆train : ∆test 〈J〉 for LR 〈J〉 for LR-O
∆train 1 : 9 67.4494 1.1656
∆test 240.9808 63.7078
∆train 7 : 3 126.2138 8.4395
∆test 139.1455 10.5554
∆train 9 : 1 128.6478 8.7834
∆test 130.2314 8.8516.

Table 2: Average MSEs for 1-D problem (MT Trends)

1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

15

20

25

30

35
Training on 10% - Test on training set (error = 0.034182) - Offset

Complete dataset
Train Dataset
Regressor

Figure 3: LR-O plot for 1D problem (MT Trends)

1.5 2 2.5 3 3.5 4 4.5 5 5.5
5

10

15

20

25

30

35
Training on 10% - Test on training set (error = 0.097556) - Offset

Complete dataset
Train Dataset
Regressor

Figure 4: LR-O plot for 1D problem (MT Trends)

C. MLR on MT Trends

For this low-dimensional dataset, we considered then the
multidimensional case (f = 3). As it is possible to see from
the 10000 iterations results reported in Table 3, both the MLR
and the MLR-O performs better for high train rations (70%
and 90%), but the overfitting is worse for the 10% case. Also
here, the version with offset performs significantly better for
all the cases.

Testing on ∆train : ∆test 〈J〉 for LR 〈J〉 for LR-O

∆train 1 : 9 3.2503 · 10−2 3.3581 · 10−2

∆test 3677.0591 309.7325
∆train 7 : 3 70.0117 5.6216
∆test 91.1231 8.1223
∆train 9 : 1 73.108 6.001
∆test 73.3576 6.1095

Table 3: Average MSEs for 3-D problem (MT Trends)

IV. CONCLUSIONS

From the analysis performed, we confirm that LR is a sound
learner for consistent, statistically centered, and big datasets
as the Istanbul one, while the LR-O it does not increase
significantly the already good performances. For small, sta-
tistically unbalanced datasets as the MT Trends one, if the LR
does not performs well, the LR-O increases significantly the
performances both in mono-dimensional (LR-O) and multi-
dimensional (MLR-O) cases.

40

Chapter 3. Linear regression 3.5. Summary

V. FUTURE WORK

Regarding the SP-MSCE EU case-study analysis, a better
way to estimate the performances of linear regression should
be to compare these results with a multidimensional problem
f > 1. It should be interesting also to perform test for
a big, statistically un-centered dataset. Regarding the MT
Trends case-study analysis, size(∆) = 32 is definitely too
little in order to draw a conclusion w.r.t. small size datasets.
Further analysis should test bigger datasets, comparing differ-
ent size(∆) = 10i (0 ≤ i ≤ 4). Another variation should be
testing it with a small, statistically centered dataset.

APPENDIX

A. LR on SP-MSCE EU

B. LR-O on SP-MSCE EU

41

Chapter 3. Linear regression 3.5. Summary

C. LR on MT Trends D. LR-O on MT Trends

42

Chapter 3. Linear regression 3.5. Summary

E. MLR on MT Trends F. MLR-O on MT Trends

43

Chapter 3. Linear regression 3.5. Summary

44

Chapter 4

Optimization

Why optimization is important? For example, it allows to plan in the most efficient way the maintenance
interventions on a machine operating in a production line, scheduling them in order to reduce both the
probability of failure and the cost of interventions.

The basic task of optimization is finding extrema of an objective function

E = f(w) f : S ⊂ Rm → R

An extreme is a point w∗ ∈ S that may be a maximum or minimum.

A point w∗ is a minimum if there is a neighborhood R ⊆ S, where the following holds:

f(w) ≥ f(w∗)∀w ∈ R

So, a minimum is a point where f has a value smaller than in any other point in a given neighborhood.

A point w∗ instead is a maximum if is a minimum of −f .

Because of the interchangeability of minima e maxima (from f to −f), we will talk only about mini-
mization

4.1 Minimization problem

A minimum is relative if R ⊆ S strictly i.e., there is some other point in S (outside R) where f has a
smaller value than f(w∗).

A minimum is absolute if R = S.

A relative minimum is a minimum only in a neighborhood (locally), so we also say “local” minimum for
relative and “global” minimum for absolute.

What objective functions are we interested in? An objective function can also be termed cost function
when we are minimizing it. A common type of cost function is an error function measuring the lack
of quality of a learner (as we saw in the previous Chapter). A common type of objective function to
maximize is a performance function measuring the quality of a learner.

45

Chapter 4. Optimization 4.1. Minimization problem

Giving some other definitions:

• An optimal solution is an extremum of f , while an optimal value is f(w∗)

• (non-standard, but useful) A suboptimal solution is an approximation to an optimal solution →
value ' f(w∗)

• A feasible solution is any point w which satisfies all hypotheses of the optimization problem (it
might be an optimal solution).

The optimization problem is often made difficult by the presence of many local minima.

4.1.1 Convex sets and functions

A set S ⊂ Rm is convex if and only if, for any θ ∈ [0, 1]

∀v,w ∈ S ⇒ θv + (1− θ)w ∈ S

More generally, if for any θ1 > 0, ..., θn > 0 such that

∀v1, ...,vn ∈ S ⇒
∑

k

θkvk ∈ S Convex combination

Properties:

• v ∈ Rm (a single point) is convex

• ∅ = {} (the empty set) is convex

• Rm is convex

And if S1 and S2 are convex, then

• S1 ∩ S2 is convex

• S1 ∪ S2 is not necessarily convex (o+ o =∞)

A function f : S ∈ Rm → R is convex if S is a convex set and if ∀v,w ∈ S, and with 0 ≤ θ ≤ 1:

i.e., if its epigraph is a convex set more generally for any θ1 > 0, ..., θn > 0 such that
∑
k θk = 1

46

Chapter 4. Optimization 4.1. Minimization problem

f(w) concave ⇒ −f(w) convex

But why should we be interested in convexity?

• Convexity is a property of a problem, not just of a loss function:

– Objective

– Learning machine on which the objective is computed (because we want to take derivatives)

– The parameter space - remember that a function is not convex if its domain is not convex!

• Convexity is a good thing:

– Uniqueness of extrema

– Convergence of iterative algorithms

• Not all problems are convex:

– Some learners guarantee a convex problem (e.g., SVM)

– For non-convex problems we usually cannot be sure whether a minimum is absolute
(global) or relative (local)

– In non-convex optimization, often convex approximations (2nd order Taylor) are used itera-
tively

4.1.2 Gradient and Hessian

The gradient is a vector field:

∇f =

[
∂f(w)

∂w1
,
∂f(w)

∂w2
, ... ,

∂f(w)

∂wm

]T

The derivative gives the rate of growth of a function of a scalar variable (negative sign→ decreasing). The
gradient scalar value (norm) gives the rate of maximum growth, while the direction gives the direction
of maximum growth.

The gradient indicates the direction of maximum increase, and moving in the opposite direction −∇f(w)
we achieve the maximum rate of decrease. This observation is very useful in optimization techniques.

The Hessian matrix (or simply Hessian) is instead defined as:

The Hessian matrix can be thought of as a list of m vectors

47

Chapter 4. Optimization 4.1. Minimization problem

hi = ∇(∇f(w))i

Derivative is a linear operator and the order of differentiation does not matter:

⇒ H is a symmetric matrix:

4.1.3 Minimum and convexity conditions

Let’s try now to characterize the minima:

Necessary first-order minimum condition:

∇E(w∗) = 0

This condition characterizes all points which are local minima, but also local maxima or saddle
points (points which are minima along one direction and maxima along another direction).

If the function is a convex function this condition is also sufficient.

We can have though a cost function that is locally convex, that is, we have convexity only in a neigh-
bourhood of w∗ (intermediate situation):

⇒ the first-order condition is then a necessary and sufficient condition of local mini-
mum. Other local minima belong to different neighborhoods (”basins”).

As for minima, we have different conditions of convexity:

• f(w) is convex if Hf (w) is positive semidefinite for all w

• f(w) is locally convex around a point w0 if Hf (w) is positive semidefinite in a neighbourhood of
w0

→ A matrix A is positive semidefinite (sometimes written A ≥ 0) if

∀v ∈ Rm v′Av ≥ 0

Hessian generalizes the second derivative and “positive semidefinite” generalizes “non-negative”

Hence, to check whether a given point w is a minimum, we have:

• Necessary conditions of extremum: ∇f(w) = 0

• Necessary and sufficient condition of convexity: Hf (w) ≥ 0

• Sufficient conditions of minimum: ∇f(w) = 0 ∧Hf (w) ≥ 0

48

Chapter 4. Optimization 4.2. Optimization algorithms

4.1.4 Taylor polynomials

Before we start to see the various optimization algorithms, we need to recall a last concept: the Taylor
polynomial. The Taylor polynomial of degree 2 for a scalar function f(w) centered around w0:

The equivalent formula for a scalar field (w ∈ Rm):

4.2 Optimization algorithms

We have different types of optimization algorithms regarding the case1:

• CASE 0: we only know f(w) → computed values of the objective

• CASE 1: we know f(w) and ∇wf → computed values of the gradient

• CASE 2: we know f(w),∇wf and Hf (w) → computed values of the Hessian

4.2.1 Case 1 - Descent techniques

In Case 1 we know f(w) and ∇wf and at each search point we approximate f(w) with its
first-order Taylor expansion. We can use two techniques:

• finding zeros of the gradient by solving equations in closed form (usually hard)

• gradient descent

Regarding descent techniques, we iteratively descend toward the minimum

by taking steps in the direction of the reverse gradient, −∇f(w):

The algorithm is the following one:

1. Initialize: set l = 0 and select w(l = 0) = w0

2. Compute the direction:

∇w(l)← −∇f(w(l))

||∇f(w(l))||

3. Compute (by line search) the appropriate step size η

4. Scale ∇w(l)← η∇w(l)

5. Perform step w(l + 1)← w(l) +∇w(l)

6. Compute convergence test. If necessary, iterate from step 2.

How do we perform line search?

1cfr. Yurii Nesterov’s Lectures on Convex Optimization regarding first and second order oracles.

49

Chapter 4. Optimization 4.2. Optimization algorithms

• We identify the direction of decrease by the versor (vector with unit length)

z =
−∇E(wτ)

||∇rE(wτ)||

• We perform a minimization of the function y(t) = f(zt), which is a function of one variable

η = min
t
y(t)

⇒ This may not be practical or possible, for instance, in distributed implementations. So in these
cases the value of η must be guessed.

⇒ There are also indirect methods which modulate η adaptively, changing it according to the variations
of the cost function.

The step size η changes the behavior of the descent

The main pro of gradient descent is that is a simple techniques.

The cons are its unnecessarily slow convergence (always directed exactly as the negative gradient) and
the fact that sometimes “is not going the good direction” (→ methods such as conjugate gradient correct
this aspect)

4.2.2 Case 2 - Newton-Raphson method

In Case 2 we know f(w),∇wf and Hf (w) and at each search point we approximate f(w) with
its second-order Taylor expansion. More sophisticated techniques are possible:

• (approximate) line search to find the optimal step size

• checking the necessary and sufficient condition of minimum

• Newton-type algorithms (faster steps)

(...)

Regarding Newton-type algorithms, to find a zero of a generic function g(x) they iterate as follows:

1. Start at x0

2. At each step τ compute the update as

xτ+1 = xτ −
g(xτ)

g′(xτ)

The update finds exactly the zero of the 1st order Taylor approximation of g in xτ ... but the
Taylor approximation is not g, so we repeat!

The necessary 1st order condition of minimum is that that minimum of f has to be a zero for its derivative
f ′. Hence, to find a minimum of a function f(x), set

50

Chapter 4. Optimization 4.2. Optimization algorithms

and then apply the Newton-Raphson method:

1. Start at x0

2. At each step τ compute the update as

xτ+1 = xτ −
f ′(xτ)

f ′′(xτ)

For multidimensional functions f(w) : Rm → R we have:

The pros of such methods is that is simple but much faster than gradient descent.

The cons are that we need to compute the Hessian (O(m2) space complexity) and to invert it (O(nq)
time complexity, with 2 < q ≤ 3 depending on the algorithm).

4.2.3 Case “1.5” - Hybrid method

4.2.4 Case 0 - Direct search

51

Chapter 4. Optimization 4.2. Optimization algorithms

52

Chapter 5

Statistical learning

We saw in Chapter 2 that, in order to evaluate a decision-maker, we can use the following formula for
quality evaluation of continuous decision set:

R =

∫

X
R (y(x)|x) p(x)dx (Expected risk)

In this case though we are in Learning Scenario 3 (only data available) – as for linear regression (Chapter
3) – so we are evaluating directly from data, because in real life we have no access to probabilities:

R̂ =
1

n

n∑

i=1

R (y(xi)|xi) xi = a data set or sample (Empirical risk)

This empirical risk gives us an average over the available data, a Monte Carlo approximation of the
expected risk R:

Probability → Statistics

R → R̂

What is the problem with R̂? The sample is randomly sampled, then every sample will be different:

∀ sample ∃ different R̂ =⇒ R̂ is a random quantity itself

Let’s recall the difference between a random variable and its realization:

• A random (or stochastic) variable is a variable whose possible values are numerical outcomes of
a random phenomenon. It does not have a value, but is described by a probability distribution
function.

→ Probability represents the true source of the data

• A realization of a random variable is a numeric value that represents the outcome of one specific
experiment or observation.

→ Realizations represent the finite data that we observe experimentally.

In order to deal with realizations (Scenario 3) and not directly with probabilities (Scenario 2) we will
need empirical estimations → we will need statistics.

5.1 Statistics & parameter estimation

5.1.1 Models

Originally, “statistics” was the techniques for collecting data with the aim of governing a state. Now
statistics is much more:

• it’s the science of using empirical data to create models based on probability

53

Chapter 5. Statistical learning 5.1. Statistics & parameter estimation

• it’s the science of induction of concepts from experiments.
• it’s the science of discovery of the Laws of Nature / the science of modeling Nature.
• it’s the science of scientific inquiry.

A model is an approximation to reality that retains only those characteristics that are useful to a certain
purpose (a mathematical model, a physical model, a geometrical model, a probabilistic model, a “Rules
of nature”, a rendering, an identikit ...)

About models:

• Plato: Myth of the cave. We perceive real models only through partial experience.

• Aristotle, St. Thomas of Aquino: “Nihil est in intellectu quod non prius in sensu”. Different
perspective: no real models, only what we perceive contributes to our view of reality.

• Empiricists up to Popper: Experience is finite, therefore error=0 is impossible. Everything that is
scientific must also be falsifiable, i.e., it must be accompanied by an evaluation of its limitations
(for instance, a probability of error).

Statistics is about collecting experimental observations, then using them for estimating a model for
the observed phenomenon. This model is a probabilistic model, and is then evaluated w.r.t. its
probability of error.

Machine learning is about collecting experiences (→ a training set), then using them to learn some task
(e.g., a classification rule) → a large part of ML is the same as statistic inference (though the terms
are sometimes different). There are some assumptions related to the training set:

• it was obtained by random sampling.

• the observed phenomenon has a fixed statistical behaviour,

• each experiment is unrelated to any other.

We have now to introduce a fundamental property of the samples of the training set:

• If the individual patterns are independent:

– The probability of any pattern does not depend on the probability of any other patterns

– In particular, even if we sample sequentially, what we get at time t does not depend on what
we’ve got at times 1, ..., t− 1

• and the individual patterns are also identically distributed:

– Patterns come from a single data distribution: not more than one, not one that changes in
time

⇒ we speak of independent, identically distributed sample (i.i.d. sample)

Not all problems produce i.i.d. data. For instance, sequential data are not independent (i.i.d in fact
means that ordering does not matter and expectations and means make sense):

Why using probabilities? The source of my data is usually impredictable, due to random behaviour
(noise) or unknown behaviour. Moreover, most of the times there are unobservable effects and
variables → we model them as “randomness”, and it is impossible to distinguish between randomness
and unobservability. Consider this example:

54

Chapter 5. Statistical learning 5.1. Statistics & parameter estimation

5.1.2 Model parameter estimation

The two goals of statistics are to (1) compute something (a “statistic”) based on the data and (2)
evaluate the probability that the above computation is wrong (confidence)
→ high confidence = good generalization.

What is parameter estimation? In models there are one (or more) quantities that we want to measure
but not directly accessible. This could happen for two possible reasons:

• It is not a physically measurable quantity

• The measurements are affected by random variations or noise

Parameter estimation requires the following “ingredients”:

• The data: a training set

• The learner : a model depending on a set of parameters, to adapt (fit) it to the actual data

• The loss: a model for the uncertainty of the measurements (a noise model)

The estimation process takes two phases:

• Select an estimator suited to the problem

• Select the value of parameters that optimizes the estimator

Remember: The estimator is a statistic = a function of the training set.

After the estimation process, ha to be performed an error evaluation, that is, estimating the probability
that an estimate is wrong. In the general case, a parameter w is estimated by a statistic ŵ. There is a
random error in this estimate:

|w − ŵ|

In Machine Learning, estimating generalization means evaluating this error.

Then, the complete process is the following one:

1. Learning is statistical estimation

2. The training set is the sample

3. The result of learning is a classifier with some measured performance

4. Performance of learning depends on the sample: it is a statistic, a random variable itself

5. It is necessary to evaluate the probability of correctness of this statistic

6. Good generalization = correct statistic

5.1.3 Learning process

The learning process use the data to choose the learner that minimizes the loss with maximum confidence:

55

Chapter 5. Statistical learning 5.1. Statistics & parameter estimation

Type of output
Quantitative Nominal

Super- Yes Regression Classification
vised No Low-dimensional mapping Clustering

In supervised problems we can write proper loss functions to evaluate the discrepancy between our
output and the target. In unsupervised problems we use other quality indicators:

• Examples of loss functions for regression (output and target are quantitative, i.e., real numbers):

– Squared loss:

λ(y, t) = (t− y)2

Its expectation is the mean squared error

– Absolute loss:

λ(y, t) = |t− y|

Used in “median regression”

– Huber loss:

λ(y, t) =

{
(t− y)2 |t− y| < ε

(2 · |t− y| − ε)ε else

• Examples of loss functions for classification (output and target are nominal, but we may use
scores in [−1,+1]) → losses may depend on 1(y 6= t) (nominal) or on yt (real-valued scores) which
is positive when correct

– Zero-one loss:

λ(y, t) = 1(6=) =

{
0 t = y

1 else

Its expectation is the mean error rate

– Hinge loss:

λ(y, t) = max(0, 1− yt) =

{
0 yt > 1y

yt else

Sensitive to the magnitude of errors. Used in support vector machines.

There is a fundamental problem when dealing with learning. There are in fact two kinds of learning
processes:

• Inductive learning: Learning from examples or data

is the task of learning a function for every possible input, given only a finite set of example
inputs. This is called generalization.

• Deductive learning: Learning from hypotheses and rules

While deduction extracts, but does not create, new knowledge. Induction creates new knowledge,
and therefore is not possible. But then how does learning work, if it is not possible? Induction
(generalization) only works if we have an inductive bias = an a-priori knowledge or assumption.
Examples of inductive bias are the following ones:

56

Chapter 5. Statistical learning 5.2. Parametric methods

Bias is not a bad thing, in fact it has been accumulated through successful evolution, and it is the basis
of learning and even simple perception in living beings, including humans. A universal bias is Ockham’s
razor: “Frustra fit per plura quod potest fieri per pauciora”

But then, how to measure complexity?

5.2 Parametric methods

For these cases we have one type of bias, that is, the parametric hypothesis:

The data are generated by a source whose probability density is known up to a finite number
of parameters, and only these parameters (e.g., class center, class variance) are unknown.

For example, a binary classification problem belongs to these methods:

5.2.1 Maximum Likelihood parameter estimation

Consider a sample X = {x1, ..., xn}
The parametric assumption states x

¯l
∼ p(x|θ) (read symbol “∼” as: “distributed according to”)

p(x|θ) is a probability density function (pdf) that depends on a set of parameters θ

Suppose the data are fixed: what is the probability (density) of observing a given θ? We define the
Likelihood of a given set of parameters:

L(θ,X) = p(X|θ) if i.i.d. hypothesis holds
= −→ =

n∏

l=1

p(xl|θ)

The Maximum Likelihood criterion states that we have to select the θ that maximizes L(θ,X). But
what really is the likelihood?

L(θ,X)
should be

= p(θ|X)
Bayes

=
p(X|θ)��p(θ)

���p(X)
= p(X|θ) = L(θ,X) =

n∏

l=1

p(xl|θ)

We performed that “simplification” because if all parameter values are uniformly probable, p(θ) is constant
(does not depend on θ), and the denominator does not depend on θ at all → this is maximized when
L(θ,X) = p(X|θ) is maximum.

Since for maximization, monotonically increasing transformations don’t change the solution, we can define
the log-likelihood:

L(θ,X) = lnL(θ,X) = ln

n∏

l=1

p(xl|θ) =

n∑

l=1

ln p(xl|θ)

Since for maximization, neither a constant change the solution, we can define the average log-likelihood:

L̂(θ,X) =
1

n
L(θ,X) =

1

n

n∑

l=1

ln p(xl|θ)

Remark: If the p(xl|θ) are of type a eb, the logarithm will cancel out the exponential and only leave
b+ ln(a).

57

Chapter 5. Statistical learning 5.3. Non-parametric methods

Estimation of univariate Gaussian See the following example:

So, the maximum likelihood estimate of the parameters of a univariate Gaussian density is:

µ̂ =
1

n

n∑

l=1

xl σ̂ =
1

n

n∑

l=1

(xl − µ̂)2

5.2.2 ML and MAP

5.3 Non-parametric methods

Non-parametric statistics makes no assumptions about probability distributions. In fact, w.r.t the
same problem:

• parametric statistics: assuming that two random variables have a Gaussian probability density,
decide whether they have the same mean and variance

• non-parametric statistics: decide whether two random variables have the same probability distribu-
tion

Non-parametric models have a complexity (model size, number of parameters) that is not pre-defined,
but depends on the data. In fact, w.r.t the same problem:

• parametric model: assuming that data from two classes have a Gaussian probability density with
the same variance, find the separating hyperplane that ensures the best expected risk

58

Chapter 5. Statistical learning 5.3. Non-parametric methods

• non-parametric model: find a classification rule that, given a training set from two classes, ensures
the best expected risk

Two basic non-parametric classifiers that we will see in this Chapter are the nearest-neighbour
classifiers and the decision trees. They don’t explicitly implement a model with parameters, but directly
build a discrimination rule from data.

5.3.1 Nearest-neighbour classifiers

Cover TM, Hart PE (1967). “Nearest neighbor pattern classification”.
IEEE Transactions on Information Theory. 13 (1):21-27.

Consider a given dataset

∆ = x1 · · · xl · · · xf t =

x
(1)
1 x

(1)
2 · · · x

(1)
l · · · x

(1)
f t1

x
(2)
1 x

(2)
2 · · · x

(2)
l · · · x

(2)
f t2

...
. . . · · · · · ·

...

x
(o)
1 x

(o)
2 · · · x

(0)
l · · · x

(o)
f to

where f is the number of features for each observation and o is the number of observations. For example,
with f = 2 and o = 10:

Age and sex (x) Likes ice cream t = f(x)
(22,M) yes
(23,M) yes
(21,F) yes
(18,M) yes
(19,F) yes
(25,F) no
(27,M) no
(29,F) no
(31,F) no
(45,M) no

In our example, y can assume only two values, ”yes” and “no”. If we describe the alphabet of the possible
attributes of the output as A = {′′no′′, “yes′′}, we’ll have A[1] = “yes′′ and A[0] = “no′′.

Consider also and a “query” point x̄ that is given (e.g. (22,F)). For that query point, the classifier will
find the nearest neighbour minimizing the distance from each sample of the dataset xl (e.g. we want to
understand if a 22-old female likes ice cream):

n = arg min ||xl − x̄||

This n is the index w.r.t. the possible values of the output (A). Then, the output of our classifier will
be

y = A[n]

Properties of NN:

• ‘O(1) “learning” complexity (just store the training set!)

• but O(nd) classification complexity

• (sort of) works even for regression, with t ∈ R
• Theoretical guarantee: For n→∞, error rate ≤ 2 · Bayes error

• but may “overfit”, i.e., decision regions may have jagged borders

59

Chapter 5. Statistical learning 5.3. Non-parametric methods

5.3.2 k-Nearest-Neighbour classifier

The k-nearest neighbor (kNN) algorithm is a nearest neighbor classifier, that can though (as already seen
for all these classifiers) implement supervised machine learning algorithm and solve both classification
and regression problems.

The kNN algorithm assumes that similar things exist in close proximity. In other words, similar things
are near to each other (e.g. “Birds of a feather flock together”):

Notice in the image above that most of the time, similar data points are close to each other. The kNN
algorithm hinges on this assumption being true enough for the algorithm to be useful. kNN captures the
idea of similarity (sometimes called distance, proximity, or closeness) calculating the distance between
points on a graph.

There are other ways of calculating distance, and one way might be preferable depending on the problem
we are solving. However, the straight-line distance (also called the Euclidean distance) is a popular and
familiar choice.

kNN Algorithm:

1. Load the data (a training set X = {x1, ...,xl, ...,xm} and a “query” point x̄ that are given)

2. Initialize k to your chosen number of neighbors

3. For each example xl in the data

(a) Calculate the distance between the query point and the current ||xl − x̄||
(b) Add the distance and the index of the example to an ordered collection

4. Sort the ordered collection of distances and indices from smallest to largest (in ascending order) by
the distances

5. Pick the first k entries from the sorted collection

{n1, ..., nk} = top-k||xl − x̄||

6. Get the labels of the selected k entries

60

Chapter 5. Statistical learning 5.3. Non-parametric methods

7. If regression, return the mean of the k labels

y = mean{tn1 , ..., tnk
},

8. If classification, return the mode of the k labels (like a majority voting)

y = mode{tn1 , ..., tnk
},

Here we have a Pyhton implementation of it:

from collections import Counter
import math

def knn(data , query , k, distance_fn , choice_fn):
neighbor_distances_and_indices = []

3. For each example in the data
for index , example in enumerate(data):
3.1 Calculate the distance between the query example and the current
example from the data.
distance = distance_fn(example [:-1], query)

3.2 Add the distance and the index of the example to an ordered collection
neighbor_distances_and_indices.append ((distance , index))

4. Sort the ordered collection of distances and indices from
smallest to largest (in ascending order) by the distances
sorted_neighbor_distances_and_indices = sorted(neighbor_distances_and_indices)

5. Pick the first K entries from the sorted collection
k_nearest_distances_and_indices = sorted_neighbor_distances_and_indices [:k]

6. Get the labels of the selected K entries
k_nearest_labels = [data[i][1] for distance , i in k_nearest_distances_and_indices]

7. If regression (choice_fn = mean), return the average of the K labels
8. If classification (choice_fn = mode), return the mode of the K labels
return k_nearest_distances_and_indices , choice_fn(k_nearest_labels)

def mean(labels):
return sum(labels) / len(labels)

def mode(labels):
return Counter(labels).most_common (1) [0][0]

def euclidean_distance(point1 , point2):
sum_squared_distance = 0
for i in range(len(point1)):
sum_squared_distance += math.pow(point1[i] - point2[i], 2)
return math.sqrt(sum_squared_distance)

def main():
Regression Data
Column 0: height (inches) | Column 1: weight (pounds)
reg_data = [[65.75 , 112.99] ,[71.52 , 136.49] ,[69.40 , 153.03] ,[68.22 , 142.34] ,

[67.79 , 144.30] ,[68.70 , 123.30] ,[69.80 , 141.49] ,[70.01 , 136.46] ,
[67.90 , 112.37] ,[66.49 , 127.45] ,]

Question:
Given the data we have , what’s the best -guess at someone ’s weight if they are 60

↪→ inches tall?
reg_query = [60]
reg_k_nearest_neighbors , reg_prediction = knn(reg_data , reg_query , k=3, distance_fn=

↪→ euclidean_distance , choice_fn=mean)

Classification Data
Column 0: age | Column 1: likes pineapple
clf_data = [[22, 1], [23, 1], [21, 1], [18, 1],

[19, 1], [25, 0], [27, 0], [29, 0],
[31, 0], [45, 0],]

Question:
Given the data we have , does a 33 year old like pineapples on their pizza?
clf_query = [33]
clf_k_nearest_neighbors , clf_prediction = knn(clf_data , clf_query , k=3, distance_fn=

↪→ euclidean_distance , choice_fn=mode)

if __name__ == ’__main__ ’:
main()

Choosing the right value for k To select the k that’s right for the data, we have to run the kNN
algorithm several times with different values of k and choose the k that reduces the number of errors
we encounter while maintaining the algorithm’s ability to accurately make predictions when it’s given
data it hasn’t seen before.

61

Chapter 5. Statistical learning 5.3. Non-parametric methods

Here are some things to keep in mind:

• As we decrease the value of k to 1, our predictions become less stable. Just think for a minute,
imagine k = 1 and we have a query point surrounded by several reds and one green (let’s say the
top left corner of the colored plot above), but the green is the single nearest neighbor. Reasonably,
we would think the query point is most likely red, but because k = 1, kNN incorrectly predicts that
the query point is green.

• Inversely, as we increase the value of k, our predictions become more stable due to majority
voting/averaging, and thus, more likely to make more accurate predictions (up to a certain point).

Eventually, we begin to witness an increasing number of errors. It is at this point we know we
have pushed the value of K too far.

• In cases where we are taking a majority vote (e.g. picking the mode in a classification problem)
among labels, we usually make k an odd number to have a tiebreaker.

Advantages:

• The algorithm is simple and easy to implement.

• There’s no need to build a model, tune several parameters, or make additional assumptions.

• The algorithm is versatile. It can be used for classification, regression, and search.

Disadvantages:

• The algorithm gets significantly slower as the number of examples and/or predictors/independent
variables increase.

kNN in practice kNN’s main disadvantage of becoming significantly slower as the volume of data
increases makes it an impractical choice in environments where predictions need to be made rapidly.
Moreover, there are faster algorithms that can produce more accurate classification and regression results.

However, provided you have sufficient computing resources to speedily handle the data you are using
to make predictions, kNN can still be useful in solving problems that have solutions that depend on
identifying similar objects. An example of this is using the kNN algorithm in recommender systems,
an application of kNN-search.

Recommender Systems At scale, this would look like recommending products on Amazon, articles
on Medium, movies on Netflix, or videos on YouTube. Although, we can be certain they all use more
efficient means of making recommendations due to the enormous volume of data they process. However,
we could replicate one of these recommender systems on a smaller scale using what we have learned here
in this article. Let us build the core of a movies recommender system.

Question we are trying to answer: Given our movies data set, what are the 5 most similar movies to a
movie query?

Gather movies data: we could use some movies data from the UCI Machine Learning Repository, IMDb’s
data set, or painstakingly create our own:

Movie ID Movie Name IMDB Rating Drama Thriller Comedy History

...

When we run the algorithm, we see that, for a query movie, it recommends k films.

Variants

• Weighted nearest neighbours (weight proportional to distance)

• Condensed NN (choice of c < n observations rather than all n data), O(cd)

• Approximated NN (distance is approximated with a computation time) < O(d)

62

Chapter 5. Statistical learning 5.3. Non-parametric methods

5.3.3 Decision trees

Decision trees are a non-parametric classifier for categorical data. There exist many variants (e.g. ID3,
C4.5, CART). The main idea behind this classifier is is following one:

1. Select one feature (attribute, variable)

2. Partition the training set according to its possible values (levels)

3. For each of the parts of the training set so obtained (one per level)

(a) if it contains data from one class only, then decide for that class

(b) else if it contains data from more than one class and all features have been used then
decide for the majority class

(c) else apply again the same procedure using a different feature

Consider the following example starting from this dataset:

The tree we can obtain is the following:

In order to use induction (learning) of decision trees (→ the ID3 decision trees) we use have to use
a measure of “good class separation”. Let’s introduce the following definitions:

Hence, in order to ensure “good class separation” we will have to select the feature that gives the
largest information gain.

63

Chapter 5. Statistical learning 5.3. Non-parametric methods

The pros of such a classifier is that is easily interpretable (only one feature at a time) and allows a very
quick learning process.

The cons are that it is suboptimal (a greedy algorithm), it splits on features with many values are more
likely, with few data splits may be on irrelevant features (noise) and it is not suitable for quantitative
(e.g., real-valued) features.

Some remedies to the cons are some variations and extensions (like the C4.5, CART versions):

5.3.4 Random forests

A random forest is a set of random trees, trained on randomly resampled training sets. It is a type
of ensemble classifier. The method used is the following one:

1. Receive one training set X of cardinality n patterns

2. Create b new training sets of size n by randomly sampling from X with replacement

3. Train one random tree on each of the b new training sets

4. Inference: Given one query pattern:

(a) Classify the pattern with each tree

(b) Make the final decision by majority voting among the b individual decisions

How to perform random resampling? One way is random resampling with replacement (bootstrap):

Given one training set X of cardinality n, a bootstrap sample is another traning set
X(i) obtained by randomly sampling with replacement n times from X:

There are

[
2n− 1
n− 1

]
possible bootstrap samples.

(This can be approximated as (nπ)
1
2 22n−1, so we know it is ∝ 22n)

We can also proceed aggregating bootstrap samples. In decision forests in fact, we aggregate b
trees trained on b different bootstrap samples. Aggregating learners that have been fitted on bootstrap
samples is called Bootstrap aggregating (or bagging). Bagging reduces variance, the sensitivity to
sampling (dependence on the particular training set).

64

Chapter 5. Statistical learning 5.3. Non-parametric methods

We can as well use Learning random trees:

65

Chapter 5. Statistical learning 5.3. Non-parametric methods

kNN Classifier Tuning
Report for the Machine Learning course, EMARO

Davide Lanza
EMARO+ M2
Genoa, Italy

davidel96@hotmail.it

Abstract—In this report we will analyze a MATLAB imple-
mentation of the k-Nearest Neighbors classifier. After a short
introduction, we will define the theoretical framework from which
we derived our implementation, focusing on this specific NN
classifier. We will then test its accuracy w.r.t. the classic MNIST
dataset, analyzing and comparing the different results obtained
for different k values, in order tu tune the optimal value for this
specific classification task.

Index Terms—Machine Learning, Supervised Learning, Clas-
sification, Nearest Neighbors, kNN classifier, MATLAB, MNIST
dataset

I. INTRODUCTION

Thanks to the exponential increase of data available on
the Internet, the volume of information available for perform
machine learning task grows incredibly. Classification tasks
are an important component in information extraction and for
predictive tasks.

In this report, we focus on a specific technique, suitable for
both classification and regression task, but designed mostly
for the first case: the nearest-neighbor classifiers. First, we
will discuss the theoretical framework from which we derived
our MATLAB implementation, then we will test it w.r.t. the
MNIST database of handwritten digits[1], which includes a
training set of 60000 examples, and a test set of 10000
examples, that is a subset of a larger set available from the
National Institute of Standards and Technology (NIST). The
digits have been size-normalized and centered in 28x28 gray
scale images, and are a standard benchmark for machine
learning tasks.

II. MODEL

In this section, we will present the theoretical framework
from which we have implemented our k-Nearest-neighbour
classifier (kNN)[2], the common nearest neighbors classifier.
The kNN can though (as a NN classifier) implement super-
vised machine learning algorithm and solve both classification
and regression problems.[3]

Every NN classifier assumes that similar things exist in
close proximity: that is the starting bias in order to allow
learning from data, i.e. most of the time similar data points
are close to each other. The kNN exploit this bias with a
similarity check between the known elements of the dataset
and a queried unknown element. Normally, this similarity is a
distance, computed between points on a graph. In this regard,

the Euclidean distance is a intuitive and common choice, and
is the one we adopted here. More in detail, the kNN Algorithm
works as follow:

1) Load the training dataset set

∆ = x1 · · · xl · · · xf t =

=

x
(1)
1 x

(1)
2 · · · x

(1)
l · · · x

(1)
f t1

x
(2)
1 x

(2)
2 · · · x

(2)
l · · · x

(2)
f t2

...
. . . · · · · · ·

...
x
(o)
1 x

(o)
2 · · · x

(0)
l · · · x

(o)
f to

composed by o observations x, each one composed by
f features, and by the corresponding o target values t

2) Load the input “query” point x̄
3) Initialize k to the chosen number of neighbors
4) For each example xl in the data

a) Compute the euclidean distance between the query
point and the current

d(xl, x̄) = ||xl − x̄||

5) Sort the array of distances and indices from the smallest
d to largest, in ascending order

6) Pick the first k entries from the sorted array, and from
them obtain the respective t values

{t1, ..., tk} = top-k
{t}

(||xl − x̄||)

7) If it is a classification task, return the mode of the k
chosen targets:

y = mode{t1, ..., tk},

8) If it is a regression task, return the mean of the k chosen
targets

y = mean{t1, ..., tk},

In our case, given the nature of the task related to the
MNIST dataset, we will perform only a classification task,
where the kNN learner will have to discriminate between 10
different digits.

66

Chapter 5. Statistical learning 5.3. Non-parametric methods

Cipher
k 1 2 3 4 5 6 7 8 9 0
1 0.99471 0.96124 0.96039 0.96130 0.96412 0.98538 0.96498 0.94455 0.95837 0.99285
2 0.99559 0.95833 0.95643 0.95213 0.95067 0.98434 0.95914 0.92402 0.95143 0.99285
3 0.99735 0.96414 0.96633 0.96741 0.96412 0.98538 0.96400 0.94250 0.96035 0.99387
4 0.99735 0.96027 0.96435 0.96232 0.96860 0.98643 0.96303 0.93737 0.95936 0.99081
5 0.99823 0.95833 0.96534 0.95926 0.96300 0.98643 0.96303 0.94045 0.95540 0.99285
10 0.99647 0.95155 0.96534 0.95621 0.97197 0.98538 0.95719 0.94147 0.95341 0.99183
15 0.99647 0.94089 0.96435 0.95010 0.96300 0.98434 0.95330 0.93326 0.95639 0.98979
20 0.99559 0.93023 0.96930 0.95010 0.96636 0.98329 0.95233 0.93531 0.95143 0.98979
30 0.99559 0.92441 0.96732 0.94501 0.96188 0.98121 0.94649 0.92813 0.95242 0.98979
40 0.99559 0.91763 0.96237 0.93991 0.95627 0.98121 0.94163 0.92402 0.95044 0.98775
50 0.99559 0.91375 0.96138 0.93686 0.95291 0.98121 0.94066 0.91375 0.95044 0.98775

Table 1: Classification accuracy for single cipher

k Accuracy
1 0.9691
2 0.9630
3 0.9709
4 0.9693
5 0.9686
10 0.9673
15 0.9635
20 0.9626
30 0.9595
40 0.9560
50 0.9538

Table 2: Classification total accuracy

III. IMPLEMENTATION

We have a dataset composed by 7000 observations, each
one composed by f = 28 × 28 = 784 features. In or-
der to test it, we split the dataset with a 6 : 1 train-
test ratio, and we studied the behavior of the kNN while
performing a classification tasks with different values of
K = [1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50]. Every classification
can be seen as composed by 10 sub-tasks: distinguish the
digit w.r.t. the remaining 9. That is why the results have been
reported in confusion matrices[4] (see Appendix) that allow to
highlight the accuracy for every sub-task (see also Table 1),
together with the general accuracy (see also Table 2).

Regarding the MATLAB implementation, the computation
of the 10000 queries of the test dataset ∆test is not compu-
tationally easy. With X = ∆train and x_query∈ ∆test, the
whole training using the function

vecnorm(X - x_query,2,2)

in order to compute the euclidean distance took 1.30h ∼ to
compute 10000 iterations, while with

pdist2(X,x_query,’euclidean’)

it took 1h ∼ (these tests has been done using a HP 250 G1
with Inter Core i3 processor). In order to fasten the training
process, it has been used the C-based MATLAB function

DNorm2(X-x_query,2) [5]

which reduced the computation time to almost half an hour
for the entire training.

IV. TUNING

To find the best k suitable for the data, we had to run
the kNN classifier several times with the different values of
k shown. As seen from Table 2, the better overall accuracy
has been obtained with k = 3 (the graph w.r.t. k is given in
Appendix), while in Table 1 are available the relative maxima.

As we kept the value of k neat to 1, the predictions were
less stable, then the accuracy was worse. In fact ,for the limit
case k = 1, the single nearest neighbor is the only discriminant
for classification, so, a queried “4” near to several other “4”
but with a single “1” as nearest neighbor, will be misclassified
as “1”. Inversely, as te value of k increased, the predictions
became more stable: we were in a situation where the outcome
was reached due to a majority voting dynamic. Then, more
likely we would have had more accurate predictions. The
problem with this increase in value of k is that, at a certain
point, we began to witness an increasing number of errors
because of the excessive inclusion in the majority voting of
samples not really “near” to our queried one. For this peculiar
case, the MNIST dataset classification perform better with a
low value of k (k = 3), but still we can see the worsening of
performances for k < 3.

V. CONCLUSIONS

Tuning the kNN classifier is not a complex task theoret-
ically, but it requires a lot of computational power for big
datasets. As shown, the behavior can be easily grasped from
the accuracy results, also w.r.t. the single classes. Regarding
this last aspect, is interesting to notice how, in this case, for
each digit there are different optimal values. This suggests that
a further study will have to analyze how to preprocess the data
in order to eliminate as much as possible these differences.
Further work has to be done as well in preprocessing, in
order to reduce the size of the input and ease even more the
computational weight.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998. DOI: 10.1109/5.726791.

67

Chapter 5. Statistical learning 5.3. Non-parametric methods

[2] T. M. Cover and P. E. Hart, “Nearest neighbor pattern
classification,” IEEE Transactions on Information The-
ory, vol. 13, no. 1, pp. 21–27, Jan. 1967. DOI: 10.1109/
TIT.1967.1053964.

[3] N. S. Altman, “An introduction to kernel and nearest-
neighbor nonparametric regression,” The American
Statistician, vol. 46, no. 3, pp. 175–185, 1992. DOI: 10.
1080/00031305.1992.10475879.

[4] K. M. Ting, Encyclopedia of machine learning, Springer,
Ed. 2001, ISBN: 978-0-387-30164-8.

[5] M. FileExchange. (2010). Dnorm2 function, [Online].
Available: https : / / mathworks . com / matlabcentral /
fileexchange/29035-dnorm2.

68

Chapter 5. Statistical learning 5.3. Non-parametric methods

APPENDIX

X 3
Y 0.9709

0 10 20 30 40 50
0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

0.97

0.972

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 1 - Acc. = 0.9691

6

1

7

1

2

14

1

5

1

3

2

6

3

1

1

5

12

2

14

6

1

1

1

2

3

4

5

10

1

19

5

13

5

1

1

2

3

5

3

1

3

16

7

5

1

4

11

1

3

7

1

6

1

3

22

4

10

5

7

1

4

6

2

1129

992

970

944

860

944

992

920

967

973

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 2 - Acc. = 0.9646

8

1

5

1

2

17

2

5

1

3

5

5

5

2

1

6

17

1

17

6

1

1

1

2

6

4

7

8

1

19

3

20

4

2

1

1

1

5

6

2

1

2

18

8

5

1

3

12

1

2

5

1

4

1

2

5

24

6

10

6

8

1

2

5

4

6

6

1129

988

964

940

850

942

991

906

963

973

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 3 - Acc. = 0.9709

7

1

4

1

3

20

2

5

1

3

4

1

4

3

2

1

2

10

13

8

1

1

2

3

1

7

9

12

3

13

2

1

1

4

5

3

1

2

15

7

4

1

4

8

1

2

3

4

2

6

21

4

11

5

10

4

4

5

4

1132

995

975

949

861

944

992

919

968

974

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 4 - Acc. = 0.9702

5

2

8

3

20

2

4

1

2

2

3

5

2

1

4

10

12

5

1

1

2

4

4

6

8

14

3

9

4

1

1

4

7

5

1

3

18

8

2

1

4

11

1

4

4

1

1

1

5

22

3

9

5

11

1

4

5

5

3

1133

989

973

945

864

943

992

921

970

972

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 5 - Acc. = 0.9692

8

2

6

3

21

3

7

1

2

2

4

4

3

1

3

9

12

9

1

2

3

3

4

7

13

1

9

3

1

2

1

4

7

6

1

2

16

7

2

1

5

10

1

4

4

1

4

2

6

22

4

11

6

10

2

5

5

6

4

1133

989

974

945

860

946

989

919

963

974

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 10 - Acc. = 0.967

11

3

11

4

26

4

6

1

2

2

4

4

3

1

2

6

11

6

1

1

3

2

6

9

11

2

7

3

2

1

2

1

6

7

4

1

3

18

7

1

1

6

10

1

5

7

1

1

2

3

25

6

13

8

13

1

4

6

6

6

1132

981

975

937

866

943

983

918

963

972

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 15 - Acc. = 0.9632

15

3

13

1

4

28

4

6

1

2

2

3

5

2

1

1

4

8

12

8

1

1

1

3

2

5

9

14

1

11

2

2

1

3

5

10

5

1

5

20

7

2

1

9

10

1

8

5

1

1

1

4

26

6

15

7

15

1

3

7

7

6

1131

966

974

934

862

942

980

909

964

970

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 20 - Acc. = 0.9626

18

3

13

1

4

27

4

6

1

2

2

4

4

2

1

1

7

8

13

10

2

1

1

3

2

5

10

12

1

10

2

2

2

3

5

10

3

1

5

19

7

2

1

8

11

1

6

5

1

1

1

4

25

5

16

9

16

1

3

7

7

7

1130

961

976

935

863

942

979

911

959

970

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 30 - Acc. = 0.9594

19

3

15

3

5

32

5

7

1

2

2

3

3

3

1

1

8

9

16

8

2

1

1

3

2

7

9

11

2

12

2

2

2

4

8

11

3

1

5

21

6

3

2

6

10

1

7

5

2

5

28

5

18

9

16

4

8

8

8

1130

955

977

926

857

940

973

905

961

970

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 40 - Acc. = 0.9564

26

4

16

6

5

34

5

7

1

2

2

4

3

3

1

1

6

8

18

7

2

1

1

3

2

8

7

12

2

13

5

2

2

4

9

12

5

1

7

20

8

1

2

7

11

1

7

5

1

1

4

31

7

19

8

19

3

8

8

8

1130

948

974

924

852

940

969

899

960

968

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

 0

T
ru

e
C

la
ss

Confusion matrix for K = 50 - Acc. = 0.9541

28

4

17

8

5

37

6

7

1

2

2

2

3

3

1

1

7

8

17

9

2

1

1

3

2

10

7

14

850

2

14

2

2

2

4

1

9

12

6

1

7

20

9

2

2

7

13

1

7

5

1

1

4

32

7

21

9

20

3

8

9

8

1130

944

970

921

940

966

893

959

968

69

Chapter 5. Statistical learning 5.3. Non-parametric methods

70

Chapter 6

Evaluation of classifiers

6.1 Estimation of the generalization ability

6.1.1 Statistical learning

Learning a mapping t = t(x) (e.g., classification) consists of selecting a function y = y(x) from a
hypothesis space H:

Ideal case: t(x) ∈ H and y ≡ t

Normally this is not assured and we can only find (x) ∈ H such that y ' t→ we measure the quality by
a loss function:

λ(y|t) Expected risk: R = E{λ}

Learning is done by using a training set X = {x1, ...,xn} with targets T = {t1, ..., tn} and minimizing
the empirical risk:

Minimization: minimize R̂ = Empirical risk = Monte Carlo estimate of R on X

6.1.2 Sampling effects

A training set is a sample of the whole population. Since samples are realizations of a random variable,
they will be different each time (we already know that learning machines ”learn” different rules if we
change the data).

6.1.3 Bias/variance decomposition

It is possible to decompose the expected square error objective JMSE as the sum of three terms:

JMSE = B + V +N

• B : bias – the expected difference between the error of the best model and the error of our model

• V : variance – the variance of our model?s error? i.e. the expected squared variation w.r.t. the
bias (cfr Gaussian)

• N : noise – a residual, irreducible quantity, the amount of stochasticity in the data (e.g. training
sets having different targets for very similar inputs)

For classification it is possible but more involved; underlying concepts are the same.

The bias/variance tradeoff is due to the fact that B can be lowered by using a more adaptable model
(but then the learner will fit the given training set: overfitting) while the variance can be lowered by
using a less adaptable model (but then the learner will have a low performance: underfitting). So:

• low bias = good performance (on the training set)

• low variance = reliable performance in inference: generalization

71

Chapter 6. Evaluation of classifiers 6.2. Computational (empirical) estimates of generalization

6.1.4 How to control generalization?

Several strategies are possible, divided in two main categories:

1. Evaluate quality empirically (ex post), and if necessary use this estimate for designing a new and
better learner

2. Estimate quality theoretically (ex ante), and use this estimate for designing the learner once and
for all

6.2 Computational (empirical) estimates of generalization

WARNING: We are MEASURING quality, NOT IMPROVING IT!

The standard procedure for empirical evaluation is to divide the dataset in:

The designer trains the machine using a training set and then evaluates the quality of the machine
using an independent validation set (independent = the observations must be present either in the
training set or in the test set, not both). The validation set is often called hold-out set when obtained
by holding out a fraction of the observations of the training set. If the quality of the machine does not
reach a prescribed quality level, its structure (hypothesis space) is changed and training is repeated until
satisfactory.

Once the machine is finalized, its quality is evaluated on another, independent test set.

Which size does the data sets have to have? A small training set will lead to overfitting (bad general-
ization) while a small validation or test set will lead to an unreliable quality evaluation.

Reminder: We are MEASURING quality – NOT IMPROVING IT.
Learning does not depend on validation and test set size

6.2.1 Resampling methods

But what if the available data are not enough? “Modern” statistics takes advantage of computers
to allow simulated experiments. Resampling is generating many new samples from a given available
sample. The quantity R of interest is measured many times and its distribution is estimated. From the
estimate we can compute confidence intervals and therefore we can estimate generalization ability.

6.2.2 Cross-validation

To perform a cross-validation:

1. Split your sample into a training set and a test set.

2. Evaluate R on the test set

3. This is called simply cross-validation

→ This can be done during iterative training.

72

Chapter 6. Evaluation of classifiers 6.2. Computational (empirical) estimates of generalization

When the test value of R starts to grow, we are overfitting it’s time to stop even if the optimization
has not converged yet!

6.2.3 Leave-one-out cross-validation

To perform the Leave-one-out cross-validation:

1. Split your sample into n training sets of size n− 1 and corresponding n test sets of size 1.

2. Evaluate R on each test set

3. Your final estimate of R is the average E(S) of all these one-point estimates

→ You can also compute standard deviation, confidence intervals...

→ This is called leave-one-out cross validation and is heavily used.

A more general case is k training sets of size n/k and corresponding test sets of size n = n− n/k
→ leave-k-out or k-fold cross-validation.

For example:

The leave-one-out algorithm is the following one:

73

Chapter 6. Evaluation of classifiers 6.3. Empirical evaluation of classifiers

6.2.4 Bootstrap

A bootstrap sample is made by sampling with replacement n times from the original training set X.

Take a lot of bootstrap samples (all of size n)

In each bootstrap sample, some patterns will be repeated and some will be absent.

The bootstrap estimate of R is the average of R̂ on all the bootstrap samples.

6.3 Empirical evaluation of classifiers

There are specific quality indexes for classification. In this part we consider indexes that measure
classification quality, and for that counting errors is usually not enough.

6.3.1 Contingency tables

In a contingency table, entries indicate number of co-occurrences of pairs of events from two event sets
E1, E2, ..., Ek and F1, F2, ..., Fh:

The entry ij represents number of experiments where events Ei and Fj have been observed together.

From a contingency table we can obtain the following types of information about co-occurrence of events:

• counts, its entries cij

• frequencies, if we normalize its entries: fij = cij/N

• probabilities, if we consider frequency as empirical estimates of probability: pij ' fij

6.3.2 Confusion matrix, accuracy and error rate

The confusion matrix C is a contingency table for classification outputs vs. actual classes. Hence, the
entry cij represents number of times that the classifier decided ωj when in fact the true class was ωi.
Usually C is a square matrix.

sum of all entries
∑

i

∑

i

cij = total number of experimental observations = sample size n

Example: Classify web robots (“bots”) vs human visitors in a web site:

74

Chapter 6. Evaluation of classifiers 6.3. Empirical evaluation of classifiers

Accuracy and error rate Given the confusion matrix C we can define:

where trC = trace of C (sum of diagonal elements)

The normalized indexes are:

6.3.3 The dichotomic case

When we have to classify whether an input is of a given class positive outcome or 1, vs. negative outcome
or 0, the confusion matrix is:

• cases 00 and 11 : correct classifications

• case 01 : false positive

• case 10 : false negative

Proportions (or frequencies):

Probabilities:

For this case in statistics, special historical names are used:

• Event 01 or false positive = error of the first kind or type I error

• Event 10 or false negative = error of the second kind or type II error

• P (01) = α

• P (10) = β

Example: Recognize publications written by T. Bayes in the whole Web. There is only one document by
Bayes and (suppose) 1012 other documents on the Web:

→ We got one of the two classes completely wrong (100% errors), yet the accuracy was
almost perfect!

75

Chapter 6. Evaluation of classifiers 6.3. Empirical evaluation of classifiers

6.3.4 Dichotomic case: more indexes

Sensitivity and specificity As we saw, we need other indexes when accuracy is not enough:

A good classifier has both high sensitivity and high specificity.

Precision and recall Both express the fraction of true positives over two different sets (those judged
as positive, and those actually positive):

F measure A combined index called the F measure is also defined:

A generalized version exists:

Remark! Neither precision/recall nor F take the probability of being correct on the negative class into
account (i.e., P00 or c00 do not appear anywhere), and this is an advantage when it is too easy to be
correct on the negative class!

Receiver operating characteristic curve (ROC) For a binary classifier whose operation depends
on some parameter, for instance a threshold θ, changing this parameter changes the performance of
the classifier itself - and changes C:

76

Chapter 6. Evaluation of classifiers 6.3. Empirical evaluation of classifiers

Example: consider the vandalism detectors on Wikidata (three different feature sets)1

AUC analysis The optimal R.O.C. is the one that runs closers to the left and top boundaries. This
is also the one enclosing the largest area:

The Area Under the (r.o.c.) Curve is another quality index for a classifier.

Remark! why not using these indexes directly as objective functions to be optimized for learning?
Because They cannot be expressed as the expectation (mean) of a loss function. For instance F1:

1from https://meta.wikimedia.org/wiki/Research:Building automated vandalism detection tool for Wikidata

77

https://meta.wikimedia.org/wiki/Research:Building_automated_vandalism_detection_tool_for_Wikidata

Chapter 6. Evaluation of classifiers 6.3. Empirical evaluation of classifiers

78

Chapter 7

Neural Networks

Neural Networks are computational models of network of neurons that focus on functionality rather
than plausibility. They are built of several layer, each composed by homogeneous units (performing a
simple, non-linear computation). Layers are cascaded, and connected to each other in various patterns
by adaptable weights.

Definition: Artificial Neural networks (ANNs) are networks of several interconnected units, each with
a simple behavior, most often without memory and capable of a single input-to-output transformation.
There are usually several connections, and their properties are summarized in parameters called weights.

A neural network is a “universal” model for learning mappings from inputs to outputs

Computers CNNs
Parallel Weakly Heavily
Processors Complex Simple units
Velocity Very fast Not very fast
Connection Weakly connected Heavily connected
Synchronicity Synchronous Asynchronous
Data Digital Analog

7.1 Brain and Neural Networks

7.1.1 Biological inspiration

ANNs were inspired by the biological processes scientists were able to observe in the brain back in the
50s (although they do differ from their biological counterparts in several ways).

The idea behind perceptrons (the predecessors to artificial neurons) is that it is possible to mimic
certain parts of neurons, such as dendrites, cell bodies and axons using simplified mathematical models
of what limited knowledge we have on their inner workings: signals can be received from dendrites, and
sent down the axon once enough signals were received. This outgoing signal can then be used as another
input for other neurons, repeating the process.

Some signals are more important than others and can trigger some neurons to fire easier. Connections
can become stronger or weaker, new connections can appear while others can cease to exist. We can
mimic most of this process by coming up with a function that receives a list of weighted input signals
and outputs some kind of signal if the sum of these weighted inputs reach a certain bias.

Note that this simplified model does not mimic neither the creation nor the destruction of connections
(dendrites or axons) between neurons, and ignores signal timing. However, this restricted model alone is
powerful enough to work with simple classification tasks: invented by Frank Rosenblatt, the perceptron
was originally intended to be a custom-built mechanical hardware instead of a software function:

79

Chapter 7. Neural Networks 7.1. Brain and Neural Networks

Regarding the signal generation and transmission in a neuron, we can identify an input (integration of
membrane potential), a decision (excitation, firing) and an output (signal over axon). We will pretend
that the information (however carried) is a single number.

Regarding the architecture of the brain, we can identify several types of neurons: afferent neurons (or
sensory or receptor neurons), efferent neurons (or motor or effector neurons) and interneurons (or
relay neurons, or association neurons, or bipolar neurons).

7.1.2 Neural Network model

In order to introduce the NN model, we can use the same representation of the first classifier seen (linear
classifier):

that has:

• r is the net input
• f is the activation function
• a is the activation value

80

Chapter 7. Neural Networks 7.1. Brain and Neural Networks

We have:
r = x ·w a = f(r − θ)

• x is a d-dimensional vector of input values

• w is the corresponding (d -dimensional) vector of synaptic weights, that and are either positive
(exciting) or negative (inhibiting)

• · indicates scalar product

• r indicates the net input on the neuron membrane

• f() is a nonlinear function

• θ is a threshold

• a indicates the activation value of the membrane potential, or action potential; that is, the output
of the neuron.

Examples of activation functions f are

• Heaviside step (defined on [−∞,+∞]→ {0,+1}):

f(r) = 1(r) = step(r) = Θ(r) =

{
+1 r ≥ 0

0 r < 0

(ties broken arbitrarily)

• Signum function (defined on [−∞,+∞]→ {−1,+1}):

f(r) = sign(r) =

{
+1 r ≥ 0

−1 r < 0

The signum function is a symmetrization in the interval [−1,+1] of the Heaviside step function:

sign(r) = 2 step(r)− 1

• Sigmoid or logistic function (defined on [−∞,+∞]→ {0,+1}):

f(r) = σ(r) =
1

1 + e−r

• Hyperbolic tangent (defined on [−∞,+∞]→ {−1,+1}):

f(r) = tanh(r) =
1− e−r
1 + e−r

The hyperbolic tangent function function is a symmetrization in the interval [−1,+1] of the sigmoid
function:

tanh(r) = 2 σ(2r)− 1

81

Chapter 7. Neural Networks 7.1. Brain and Neural Networks

• Ramp or Rectified-linear (defined on [−∞,+∞]→ {0,+1})1:

f(r) = max(0, r)

• Softplus (defined on [−∞,+∞]→ {−1,+1}):

f(r) = ln(1 + er)

There are also multi-neuron activation functions, that work on k neurons and produce k interde-
pendent values. So, given the stimuli r1, ..., rk, compute the output of neuron i:

• Max:

f(ri) =

{
+1 ri = maxi(r1, ..., rk)

0 else

• Softmax:

f(ri) =
eri

∑k
j=1 e

rj

Neuron assemblies Many units combine to form one collective output. Here k neurons produce 1
scalar value.

• ReLU and Softplus can be considered as approximations to the output sigmoids of many
neurons, summed together

• Max pooling: A small set of units (e.g., k = 3) gives one output which is the maximum of the k
individual outputs.

Other functions can be used in place of max (e.g., average or median) but in many applications
max gives the best results

Learning in neural networks Learning in (biological) neurons occurs by slow modification of synaptic
strength → similarly, learning in (formal) neurons occurs by slow modification of weights. Usually there
is an iterative procedure that gradually changes weights according to the experience at steps t = 0, 1, ...

General formula: wτ+1 = wτ+1 + ∆wτ+1 → whole set of weights → wτ+1 = wτ+1 + ∆wτ+1

Hebb’s hypothesis on learning as synaptic modification:

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.”

– Donald O. Hebb, The Organization of Behavior (1949)

(or, as a proverb, ‘Cells that fire together, wire together’)

1A unit with the rectifier-linear activation is nicknamed a rectified-linear unit or ReLU

82

Chapter 7. Neural Networks 7.2. Single layer neural networks

7.2 Single layer neural networks

High-level (= abstract) models of the neuron function were proposed by Warren Mc Culloch and Walter
Pitts in 1943:

y = f(w∆x− θ)
where the activation function f() could be:

• the sign (−1/+ 1) function

• or the step (0/+ 1) function

(Remember that we can get rid of θ)

We will cover two ancient, simple models – Perceptrons and Adaline – in order to introduce several
concepts as simple iterative learning rule, learning without memory (by-pattern algorithms), learning as
optimization and in the end we will show why we need for more complex models in order to solve complex
problems.

7.2.1 Rosenblatt’s perceptron (1950s)

In late 1950s, Frank Rosenblatt introduced a network composed of the units that were enhanced version
of McCulloch-Pitts Threshold Logic Unit (TLU) model. Rosenblatt’s model of neuron, a perceptron, was
the result of merger between two concepts from the 1940s, McCulloch-Pitts model of an artificial neuron
and Hebbian learning rule of adjusting weights2. In addition to the variable weight values, the perceptron
model added an extra input that represents bias.

In the architecture schematic, S-units are the Sensory units, A-units the Associative (linear (a = r),
randomly connected, random weights) and R-units the Response units (linear threshold units)

The perceptron is effectively a single-unit network:

7.2.2 Perceptron learning algorithm

The perceptron learning algorithm is a by-pattern algorithm: the weight modifications are computed
upon receiving each individual pattern.

2Bose, N. K. and Liang, P.“Neural Network Fundamentals with Graphs, Algorithms, and Applications”. McGraw-Hill,
New York, NY, 1996.

83

Chapter 7. Neural Networks 7.2. Single layer neural networks

We assume a linear threshold unit (perceptron) with

Activation: f(r) = sign(f : Rd+1 → {−1, 1}) Bias: w0

For the initialization, we take a training set of N patterns xl with targets tl and then we assign some
initial values to weights w (e.g. random in [−1, 1]) and finally we start with iteration step l = 1.

The perceptron learning algorithm is the following one:

Regarding the convergence of perceptron learning:

“If the training set is linearly separable, the perceptron learning procedure will find separating
hyperplane for it in a finite number of steps.”

If the training set is not linearly separable, the procedure does not converge.

The perceptron learning in Matlab can be implemented in the following way:

84

Chapter 7. Neural Networks 7.2. Single layer neural networks

7.2.3 Widrow and Hoff’s Adaline (1960)

The Adaline is a perceptron, but in addition to a, also r is available at the outside → differentiable
cost function. According to our previous convention we have:

In the original schematic inputs were {−1; +1} (binary, not required), output was binary AND analog
and weights where potentiometers or memistors:

7.2.4 Adaline learning algorithm (LMS algorithm)

In Adaline’s learning algorithm:

• r is used in the learning process rather than a

• r is a continuous function of the weights

→ We have a quantitative evaluation of the error

The Least Means Squares (LMS) algorithm converges to a solution even for non-linearly separable
problems, and achieves more robust solutions than the Perceptron algorithm!

Least Means Square rule In the following is described the update step rule:

Having to compare continuous quantities, we use the squared error loss, so the objective is:

85

Chapter 7. Neural Networks 7.2. Single layer neural networks

The necessary minimum condition for this cost function is ∇J = 0, and it is also sufficient because
JMSE is convex on Rd+1:

The learning rule we just obtained is the following one, and it’s a rule for batch training:

In this case, it converges in one step to the global minimum of J = JMSE , but this is possible only when
we have all the training set at once! If we don’t have it, we have to use online learning.

7.2.5 LMS with online learning

Delta rule for the l-th pattern xl At each pattern xl , a small updating step ∆wl is applied (online
learning or learning by pattern):

7.2.6 LMS algorithm and MSE minimization

Does the LMS algorithm really correspond to Mean Square Error (MSE) minimization?
YES, but convergence is on average, not deterministic.

The iterative minimization of the squared error pass through these steps:

86

Chapter 7. Neural Networks 7.2. Single layer neural networks

The term
δlxl = (tl − xl ·w)xl

is an estimate of the (negative) gradient based on just one sample. If the learning step η is small
enough, this converges on average to the unique minimum:

For l→∞ it will keep on oscillating, but always around the MSE solution.

If a probabilistic model of input is known (autocorrelation function), bounds for η can be obtained.3

7.2.7 Two further steps

1. The single-neuron “networks” seen so far only implement linear threshold classifiers
(cfr. Perceptrons: An Introduction to Computational Geometry by Marvin Minsky, Seymour A.
Papert, The MIT Press, 1987 expanded edition)

How is it possible to do better?
(cfr. Parallel Distributed Processing: Explorations in the Microstructure of Cognition by David E.
Rumelhart, James L. McClelland and the PDP research Group, The MIT Press, 1987)

2. What is the general relationship between optimization (seen in previous lectures) and learning-by-
pattern algorithms (seen here)?

7.2.8 The linear separability problem

Consider two-input patterns (X1, X2) being classified into two classes as shown:

Each point with either symbol of x or o represents a pattern with a set of values (X1, X2). Each pattern
is classified into one of two classes. Notice that these classes can be separated with a single line L. They
are known as linearly separable patterns. Linear separability refers to the fact that classes of patterns
with n-dimensional vector x = (x1, x2, ..., xn) can be separated with a single decision surface. In the case
above, the line L represents the decision surface.

The processing unit of a single-layer perceptron network is able to categorize a set of patterns into two
classes as the linear threshold function defines their linear separability. Conversely, the two classes must
be linearly separable in order for the perceptron network to function correctly4. Indeed, this is the main
limitation of a single-layer perceptron network.

The most classic example of linearly inseparable pattern is a logical exclusive-OR (XOR) function:

3A 1-hour lecture by Widrow who explains the LMS algorithm and the Adaline can be found at:

• Part 1 – The LMS algorithm: https://www.youtube.com/watch?v=hc2Zj55j1zU

• Part 2 – ADALINE: https://www.youtube.com/watch?v=skfNlwEbqck

4see Haykin, Simon.“Neural Networks: A Comprehensive Foundation, second edition”. Prentice-Hall, Upper Saddle
River, NJ, 1999.

87

https://www.youtube.com/watch?v=hc2Zj55j1zU
https://www.youtube.com/watch?v=skfNlwEbqck

Chapter 7. Neural Networks 7.2. Single layer neural networks

The one in figure is the illustration of XOR function that two classes, 0 for black dot and 1 for white
dot, cannot be separated with a single line. The solution seems that patterns of (X1, X2) can be logically
classified with two lines L1 and L2

5

Then, how to overcome the linear separability problem? With feature engineering, using more complex
neurons and designing multiple active layers → all are methods to change or enlarge the hypothesis
space. Then, starting from this situation:

1) Using feature engineering:

2) Using a nonlinear network:

3) Using a multi-layer network:

With a single layer network we can model some logic ports (correspondent to the linear separable ones):

5See Beale, R. and Jackson, T.“Neural Computing: An Introduction”. Hilger, Philadelphia, PA, 1991.

88

Chapter 7. Neural Networks 7.3. Multilayer network

But to build a XOR we can use a multilayer network with different ports, and then we can express this
as a multilayer network:

This inspired the design of multilayer neural networks (cfr. David Rumelhart, James McClelland and
Geoffrey Hinton).

7.3 Multilayer network

7.3.1 Topologies, UAP and learning

Network topologies The most general case of topology includes feedback hidden units, that does not
allow to rewrite the network in a layered way (a special type of feedback are lateral connections):

The least general topology type is the feed-forward, multi-layer one: any general feed-forward
topology can be rewritten as a multi-layer topology and any feed-forward topology can be rewritten
as a fully connected topology, possibly with some connections having weight ≡ 0:

89

Chapter 7. Neural Networks 7.3. Multilayer network

The universal approximation property (UAP) states that “a feed-forward network with
a single hidden layer containing a finite number of neurons can approximate continuous
functions on compact subsets of Rd.”

→ Cybenko, G. (1989) Approximations by superpositions of sigmoidal functions,
in “Mathematics of Control, Signals, and Systems”, 2(4), 303–314

Activation functions must not be polynomial (including linear), but it is the topology that
has the UAP regardless of activation function.

→ Hornik, K. (1991) Approximation Capabilities of Multilayer Feedforward Networks”,
in “Neural Networks”, 4(2), 251–257

This is an existence theorem, not a constructive one: it does not tell us anything about

– whether a particular function can be learned from data

– or how many units are necessary for representing the function within a given error

When applying a learning algorithm, a multi-layer networks will adapt its weights to approximate a given
input-output mapping.

The UAP guarantees that any mapping can be learned, even non-linearly-separable ones!

→ this works because each layer can be seen as learning features = learning an internal represen-
tation of the data for the following layer.

Learning Learning can be cast as optimization of a suitable objective or cost function (e.g.,
classification accuracy), but most optimization methods rely on

• either the necessary minimum condition ∇f = 0

• or on the direction of the gradient ∇f
→ requirement: f must be at least differentiable:

(even better if also convex, but that’s not possible with neural networks)

– λ differentiable w.r.t. the output

– output differentiable w.r.t. the weights

Even if f is differentiable, for hidden units we cannot compute the loss
(i.e. an error term δ like the MSE (t− a)2)
→ requirement: we need a way to do this (we will need the error back-propagation algorithm, but
before let’s analyze some activation function to see if they are at least differentiable)

7.3.2 Sigmoid activation function

The Sigmoid function is a popular differentiable activation function. In order to obtain it, we have to
start by writing the discriminant function for a problem with two Gaussian, spherical, equal-variance
classes:

90

Chapter 7. Neural Networks 7.3. Multilayer network

For the Bayes theorem we have:

We want a 2-class discriminant function g(x), hence we design it as follows (removing the factors 1/
√

2πσ):

The common positive factor exp
[
−x2+µ2

2σ2

]
cancels out:

Thanks to the hyperbolic function tanh(r) we can define the sigmoid function:

91

Chapter 7. Neural Networks 7.3. Multilayer network

7.3.3 Differentiability of activation functions

The sigmoid is the solution of the logistic equation:

y′ = y(1− y)

Therefore, by definition, for σ(r) and tanh(r) we have:

But what about the other activation functions?

• For the softplus:

• The “sharp” ReLU is not differentiable in 0, but we can use a subderivative to write:

• For the softmax, ai depends on r1, ..., rc, not just rj . So we have to write two cases:

7.3.4 Error back-propagation algorithm

The error back-propagation algorithm it is a learning algorithm for multi-layer networks. It was discov-
ered by Amari/Werbos/Parker/Rumelhart/Hinton/Williams from 1974 to 1986 and the name appears in
Rosenblatt’s “Principles of Neurodynamics” in 1962. Basically, it’s a clever application of the chain
rule of differential calculus:

We can perform gradient descent in a distributed way and without actually comput-
ing derivatives for some activation functions (sigmoid, tanh, softmax)

→ The responsibility for errors is back-propagated from the outputs back inside the network,
and distributed among the hidden layers.

How it works? It starts from the chain rule:

92

Chapter 7. Neural Networks 7.3. Multilayer network

The symbols:

The loss function We can use any differentiable loss function. The default choices are:

• We use the square loss function λ(tk, a
[2]
k) = (a

[2]
k − tk)2 for regression

• We use the cross-entropy loss (more later) for classification

• We use other losses for special requirements (e.g. insensitivity to small errors-noise or to large
errors-outliers)

(Non convex cost function)

The objective function In theory it should be the expected loss (plus penalties or regularisation
terms, as needed):6

J(W) is known only through its estimate on the training set:

6For the next few passages we will write the objective as a function J of the set of parameters (connection weights),
that is expressed as follow:

For brevity W =
[{

w
[1]
ji

}
|
{
w

[2]
kj

}]
and objective J(W)

93

Chapter 7. Neural Networks 7.3. Multilayer network

This is a summation of n terms similar to the following:

To study the algorithm, we only need to consider one pattern

• For training online (= by pattern), we will apply immediately the ∆w

• For training by epoch, we will sum several ∆w and apply them only at the end of each pass (a
training epoch).

• For training by batch, we will sum several ∆w and apply them only after some % of a complete
pass.

• The term minibatch refers to batch training with small batches so that it is more similar to online.

From now on we will write just Ĵ = Ĵl(W) for brevity.

As a first application of the chain rule, we can write

⇒ once we know the derivative of the loss, the rest does not depend on it – it is the same for any loss.

The operation of the multilayer perceptron is divided in two steps:

1. Activation forward-propagation

2. Error back-propagation

We recall here the gradient descent:

94

Chapter 7. Neural Networks 7.3. Multilayer network

Hence to back-propagate the error and update the weights, we start from computation of partial
derivatives, i.e., the gradient of the error:

• w is generically any of the weights of the network, i.e., it can stand for w
[1]
ji or w

[2]
kj (we will

distinguish the two cases).

• We need all the components of the gradient ∇Ĵ . These are
∂Ĵ

∂w
for all possible w

• We have to compute

∂a
[2]
k

∂w

(depending on whether w is a w[2] or a w[1] we will have different expansions of the above
expression)

• Then we can compute the hidden-to-output weights w
[2]
kj :

We can drop all terms not depending on k, those with q 6= k, and consider only the one with
q = k:

We plug in quantities known from the forward pass:

What we obtain is a generalization of the “delta” term which we have seen in the delta rule
by Widrow and Hoff. Generalized delta rule for the hidden-to-output weights:

• But there is a problem with the input-to-hidden weights w
[2]
kj : not all terms are readily

available. Hence, we use again the chain rule to find another formulation for
Ĵ

w
[1]
ji

Now the quantities appearing in the last equation are available, again from either the forward
pass or theory:

95

Chapter 7. Neural Networks 7.3. Multilayer network

Substituting it we have:

We obtain in the end the generalized delta rule for the input-to-hidden weights:

amazingly similar in form to that for the hidden-to-output weights

Hece, the general algorithm is the following one:

96

Chapter 7. Neural Networks 7.3. Multilayer network

Recall:

7.3.5 Output activation (softmax) layer for classification

For multi-class classification we have to solve a c-class problem with c > 2, and one output unit is not
sufficient. We have then to use c units, designed with one-hot encoding:

[0 0 ... 0 1 0 ... 0]
Unit → 1 2 ... j − 1 j j + 1 ... c

This layer of c units obeys the probabilistic constraint

c∑

j=1

aj = 1

→ the target t and the output a now are vectors of length c.

Example: Suppose to have a number of classes c = 5 and suppose that the output prediction is class =
3. We can have the following situation:

97

Chapter 7. Neural Networks 7.3. Multilayer network

How we can implement the one-hot encoding? For classification, we can use as activation a softmax
layer (different notation in the following figure):

But how does the softmax activation layer works? It obeys the probabilistic constraint by definition:

7.3.6 Information entropy and cross-entropy loss

Given ω a categorical variable with levels ω1, ..., ωc, Let’s call ωj a symbol. Symbols are generated
i.i.d. with a probability mass function:

P = {P1, ..., Pc} i.e. Pr(ω = ωj) = Pj

Frequentist probability (“counting symbols”)7:

Pj = lim
N→∞

nj
N

• N sample size

• nj ≤ N is number of times ωj appears in the sample

Suppose we draw infinite samples of finite size N from the source (N realizations of the process ω).
What is the value of N that, in the long run, ensures an average of 1 appearance of symbol ωj? In
machine learning, the answer to this question is the required number of samples, which is called sample
complexity.

7Frequentist probability or frequentism is an interpretation of probability. It defines an event’s probability as the limit
of its relative frequency in many trials. Probabilities can be found (in principle) by a repeatable objective process (and
are thus ideally devoid of opinion). This interpretation supports the statistical needs of many experimental scientists and
pollsters.

98

Chapter 7. Neural Networks 7.3. Multilayer network

Consider this:

The sample size that (in the long run) guarantees 1 observation is the denominator:

N

nj
=

1

Pj

How much information is carried by a symbol?

The information carried by symbol ωj is the number of digits needed to write

1

Pj
(minus one)

(Information measures the unexpectedness of a symbol)

Hence the number of zeros required to represent a value is

Ij = log2

1

Pj
= − log2 Pj

The number of digits is the number of zeros + 1. The unit is bits (or shannon, Sh).

So, the process ω generates a different symbol at each realization. These symbols occur with different
probabilities → different quantities of information. Finally, the overall source can be characterized by
the information of all the symbols that it produces. We now have to define the information entropy of
the source:

The information entropy of a source of symbols is the expected information of the
symbols:

(Entropy measures the unpredictability of a source)

We can now define cross-entropy, i.e. a measure of the information from one source when the informa-
tion of symbols is measured for a different source.

99

Chapter 7. Neural Networks 7.3. Multilayer network

Cross entropy:

Cross-entropy, alternate form (by summing and subtracting Pj logPj to each term in the
summation):

D(P |Q) is the Kullback-Leibler divergence from P to Q, the surplus of information
needed to describe the source P when using the source Q.

(Cross entropy measures the unpredictability of a source, when we can measure a different
(e.g., approximate) source)

Now, how to define the required cross-entropy loss function? Consider the following situation:

Then, the loss function can be expressed in function of the cross-entropy between output and target:

7.3.7 Cross-entropy objective with sigmoid activation

As an objective function for classification task, we can derive from the ideal cross-entropy function the
expected cross-entropy:

100

Chapter 7. Neural Networks 7.3. Multilayer network

The differentiation can be made as follows:

From the back propagation algorithm we recall that:

And when the loss is cross-entropy we obtain:

→ the non-linearity (sigmoid) in the output do not contribute to the gradient (exp and log cancel
out each other)

7.3.8 Cross-entropy objective with softmax activation

We recall here the derivative of the softmax:

Then, the derivative of cross-entropy with softmax is:

→ this is extremely simple and the same as the sigmoid

101

Chapter 7. Neural Networks 7.3. Multilayer network

Neural Networks
Report for the Machine Learning course, EMARO

Davide Lanza
EMARO+ M2
Genoa, Italy

davidel96@hotmail.it

Abstract—In this report we will analyze MATLAB’s own neural
network tools, contained in a library called Neural Networks
Toolbox.
Index Terms—Machine Learning, Neural Networks, Multilayer
Networks, Classification, Regression, MATLAB

INTRODUCTION

Thanks to the exponential increase of data available on the
Internet, the volume of information available for perform
machine learning task grows incredibly. Learning-from-data
tasks are an important component in information extraction
and for predictive tasks. In this report, we focus on neural
networks, a function fitting tool suitable for both classification
and regression tasks. There is proof that a fairly simple
neural network can fit any practical function, and this makes
it extremely powerful. MATLAB’s Deep Learning Toolbox
provides a framework for designing and implementing deep
neural networks with algorithms, pretrained models, and apps.

I. FEEDFORWARD MULTI-LAYER NETWORKS

We defined a set of o input vectors (dimxi = f) as columns
in a matrix

Inputs = [x1,x2, ...,xo]

and another set of o target vectors (dim ti = c) so that they
indicate the classes to which the input vectors are assigned

T argets = [t1, t2, ..., to]

Notice that the number of rows c in T is the number of
classes to be recognized in the classification task, the number
of rows f in I is the number of features of every observation
in the dataset and the number of columns o is the number of
observations. For binary classification problems c = 2, there
are only two classes (e.g. “True” or “False”), then we set each
scalar target value to either 0 or 1, indicating which class the
corresponding input belongs to. For example, you can define
the two-class exclusive-or classification problem as follows:

I = [(0, 0) (0, 1) (1, 0) (1, 1)] =

[
0 1 1 0
0 0 1 1

]

T = [False True True False] =

[
1 0 0 1
0 1 1 0

]

Figure 1: Neural network n = 10

Using the MATLAB neural network pattern recognition app
nprtool, we trained a network made by n hidden neurons
on the breast cancer dataset1 provided with the toolbox (o =
699, f = 9, c = 2 → the two associated categories with each
input vector are “benign” or “malignant”). The results for a
single-hidden layer network with n = 10 (train on 70% of
the dataset, validation on 15% and test on 15%) are shown in
Figure 2
The accuracy results for different settings of the network w.r.t.
the breast cancer dataset are shown in Table 1.

n Train Validation Test αtrain αval αtest

5 70% 15% 15% 98,16% 95,24% 95,24%
10 70% 15% 15% 96,52% 98,09% 98,09%
10 80% 10% 10% 97,32% 97,14% 92,86%
20 70% 15% 15% 97,75% 96,19% 95,23%
100 70% 15% 15% 98,77% 98,09% 93,33%

Table 1: Breast cancer overall accuracy α results

We tested the network as well on the thyroid dataset2 (o =
7200, f = 21, c = 3 → the three associated categories with
each input vector are “normal, not hyperthyroid”, “hyperfunc-
tion” and “subnormal functioning”). The accuracy results for
different settings of the network are shown in Table 2.

1 Data donated by Olvi Mangasarian, available from the UCI Machine
Learning Repository: Murphy,P.M., Aha, D.W. (1994). UCI Repository of ma-
chine learning databases http://www.ics.uci.edu/ mlearn/MLRepository.html.
Irvine, CA: University of California, Department of Information and Computer
Science.

2 From Garavan Institute. T.his data is available from the UCI Machine
Learning Repository.

102

Chapter 7. Neural Networks 7.3. Multilayer network

Figure 2: Breast cancer training results confusion matrices
(n = 10, train 70%, validation 15%, test 15%)

n Train Validation Test αtrain αval αtest

5 70% 15% 15% 94,56% 92,40% 93,70%
10 70% 15% 15% 94,11% 94,26% 93,98%
10 80% 10% 10% 94,45% 94,31% 93,06%
20 70% 15% 15% 93,12% 95,00% 93,98%
100 70% 15% 15% 92,52% 92,96% 92,50%

Table 2: Thyroid overall accuracy α results

II. AUTOENCODER

The simplest autoencoder network is a multi-layer perceptron
neural network which has one input layer, one hidden layer
(n < o), and one output layer (c = o):

The autoencoder is trained using the same pattern as both the
input and the target:

I = T

Note that in this case we don’t have any classes or other
mapping to learn. This is a special case of unsupervised
training. In fact, it is sometimes called “self-supervised”, since
the target we use is the input pattern itself.
We trained the multilayer perceptron as an autoencoder for the
MNIST data [1]. MATLAB provides a separate function that
is used as follows:

myAutoencoder = trainAutoencoder(myData,n);
myEncodedData = encode(myAutoencoder,myData);

The autoencoder learns an internal, compressed representation
for the data thanks to its hidden layer. Since it is unsupervised
learning, the goal is to learn the different MNIST classes from
unlabeled data (dataset extract in Figure 3).

Figure 3: Full dataset extract

The experiments has been performed with reduced dataset that
were subsets of different classes x1, x2, ..., x10. Each reduced
training set was composed only by 2 classes (e.g., “1” and
“8” digits) hence the number of hidden layers was n = 2,
and each hidden layer had to “encode” one class (e.g., “1”
and “8”). The results obtained from a dataset composed only
by two “easy-to-distinguish” digits “1” and “8” (Figure 4) are
shown in Figure 5.

Figure 4: ”1” & “8” dataset extract

Figure 5: ”1” & “8” dataset autoencoder results

Then, the n = 2 autoencoder has been tested on a dataset
composed only by two “difficult-to-distinguish” digits “5” and
“6” (Figure 6) are shown in Figure 7.

Figure 6: ”5” & “6” dataset extract

103

Chapter 7. Neural Networks 7.3. Multilayer network

Figure 7: ”5” & “6” dataset autoencoder results

The autoencoder can be trained in order to encode more
classes. In order to still be able to plot the results, we
implemented a 3 hidden units autoencoder and we test it for
three digits encoding (see Figure 8).

Figure 8: ”0” & “1” & “5” dataset extract

III. CONCLUSIONS

Regarding the first task, the results match what we were
expecting in the first place form the theory: an increasing
number of neurons leads to worse performances on smaller
dataset, but can bring some improvements in bigger ones, of
course only until a certain threshold .
Regarding the second task, the results show linear separation
for easy-to-distinguish classes (e.g. “1” and “8” digits in
Figure 5). Instead, with difficult-to-distinguish pairs (e.g. “3”
and “6” digits in Figure 7) the results are way worse.
Hence, train a neural network is a complex task, that does
not have a unique, structured, technique. In fact, different
situations, tasks, architectures and datasets lead to different
solutions, due to the various differences underneath. The
weight initialization, the value of the biases, the random
dataset fold splitting that leads to randomly assembled training
datasets result leads to a various range of results. To obtain
accurate results from neural networks, re-train and parameter
modification is mandatory, as shown by the results reported
here.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998. DOI: 10.1109/5.726791.

104

Chapter 8

Deep learning

Main reference:
Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press (2016)
Freely available (but not for download) at http://www.deeplearningbook.org/

8.1 Depth and internal representation

Hubel and Wiesel placed electrodes in animals brains (visual cortex). They discovered the columnar
organization of neurons:

Each layer in a cortical colum extracts features from the input it receives from the previous layer. These
features are more and more abstract:

Edges → Simple shapes → Composite shapes → Eyes, mouths, noses → ... → Grandmother

(The Grandmother Cell hypothesis)

Neural networks stores internal representations in hidden layers, but to develop such a hierarchy
may require many layers (deep networks).

But regarding learning, which are the limits of a multi-layer network?

• Error back-propagation does not work well with very deep structures

Vanishing/exploding gradient phenomenon: at each layer, the backpropagated components
of the gradient become exponentially smaller or larger (sums of sums of sums of sums of ... ,
concentration effects).

→ To avoid the problem: use shallow networks (theoretically sufficient)

Nevertheless, there is a representational advantage in depth and in the 80s and early 90s some works
proved that:

“Some logical functions, that can be implemented with a depth of k layers, require exponentially
more units if reduced to k − 1 layers”

105

http://www.deeplearningbook.org/

Chapter 8. Deep learning 8.2. Convolutional neural networks

In the 2010s:

“Dependent inputs (variables) need very deep networks” (P. Baldi)

And more recently:

“Quantitative bounds for neural networks similar to those for logical functions. For a given
accuracy ≤ ε we have:”

M units in k layers ⇒ O(2M) units in k − 1 layers

But how to go deep? How to train a very large and deep network? There are several strategies:

• Reduce the number of parameters (weights) by forcing some special connectivity pattern

• Randomly remove some parameters during learning

• Pool values together, chose only a value from each pool (e.g. the maximum)

• Use unsupervised learning on most layers except the last ones

Inductive bias: some hypotheses in the hypothesis space are made less probable than others

Strong inductive bias: some hypotheses have zero probability

The deep learning structures which are commonly used are the following ones:

• Convolutional neural networks

• Restricted Boltzmann Machines

• Autoencoders

• Fully-connected multi-layer perceptrons (usually as the final stage)

These basic networks are stacked: each acts as an individual layer in a deep hierarchical structure

8.2 Convolutional neural networks

h usually has limited support (is “short” or local). If h is even, it does not matter whether it is reversed
or not (if not, it is more properly a cross-correlation) ... but since we are learning it, it does not matter!

The convolution is a dynamic system’s with response h to an input signal x, or it is the output of a filter
applied to a signal. The signal h used to apply the transformation is often called a kernel.

Convolutional neural networks (CNNs) are translation-independent neural networks. They are used
especially when dealing with large-dimensionality, natural signals (full images, video, sound from the real
world).

106

Chapter 8. Deep learning 8.2. Convolutional neural networks

8.2.1 CNN: Convolutional layer

In a convolutional layer each unit is connected to a limited-size receptive field (e.g. for an image it
can be a 3× 3 pixel patch) and each unit has the same weights as the others (shared weights).

• Mathematically, the layer implements a discrete convolution (followed by nonlinearity) where
the convolution kernel is the weights, learned from the data:

• As a signal processor, the layer applies a finite impulse response filter w to a sampled signal x

The nonlinearity that follows the convolution is usually a ReLU, and it works as a “Detector”.

There is an optimization advantage of sharing weights: for 3× 3 patches from a 100× 100 image,
we optimize only 9 weights instead of 100000!

There are different kinds of layer connections, in the follow images we compare 3 of them with the fully
connected on:

More complex arrangements, but using the same concepts, are used for multidimensional signals (e.g.,
images: 2D; color images: 3D; video: 3D)

8.2.2 CNN: Pooling layer

A pooling layer is used after convolutional layer to reduce dimensionality. It works on a set of units (e.g.,
4) and replace the full information (e.g., 4 output values) with one scalar:

• Max pooling: take the maximum

• Other types of pooling: Average pooling or others...

• Pooling works well and acts as a subsampling or downsampling possibly non-linear, e.g., with
a max function for the max pooling or an average function for the average one.

107

Chapter 8. Deep learning 8.2. Convolutional neural networks

• Pooling introduces invariance to small changes, that is one of the main features of CNNs:

8.2.3 CNN: Output layer

The output layer is a fully-connected layer 1 which takes as inputs all the outputs of the pooling layer.
Its usual neuron model is:

r = x ·w
a = a(r)

The activation nonlinearity of the output layer can be ReLU , sigmoid or tanh. Usually for deep
networks ReLU is used (so there is no positive saturation).

An example of full CNN architecture is the following one (AlexNet2):

1The output fully-connected layer is not part of the “previous CNN”, in fact it can be substituted or retrained adapting
the underlying trained CNN to different classification task

2AlexNet is the name of a convolutional neural network, designed by Alex Krizhevsky, and published with Ilya Sutskever
and Krizhevsky’s PhD advisor Geoffrey Hinton. AlexNet competed in the ImageNet Large Scale Visual Recognition Chal-
lenge on September 30, 2012. The network achieved a top-5 error of 15.3%, more than 10.8 percentage points lower than
that of the runner up. The original paper’s primary result was that the depth of the model was essential for its high
performance, which was computationally expensive, but made feasible due to the utilization of graphics processing units
(GPUs) during training.

108

Chapter 8. Deep learning 8.3. Information bottleneck & unsupervised learning

8.2.4 Training a CNN

Training a CNN requires means training a huge number of weights, and it needs huge training sets.
Training is operated normally by stochastic gradient descent using minibatches.

8.2.5 Regularization methods

Regularization is a way to simplify the objective function so as to make it smoother and with less
local minima (easier to train). There are different methods:

• Early stopping: measure validation error during training; stop when it starts to increase

• Reducing network capacity: Smaller networks (number of layers, layer size), shared weights, ...

• Weight decay:
objective+ h||w||2 objective+ h||w||1

h is a coefficient to balance the penalty term with respect to the main objective function

A particular class of regularization methods are the stochastic regularization methods, which change
at each training step and work on average:

• Dropout: at each training step, some units are “dropped out” (removed) with some probability p.
Usually p = 0.5 (except for input units). In inference, all nodes are used, but outputs are scaled by
1− p

• DropConnect: individual connections are dropped out rather than whole units

• Stochastic pooling: in pooling, units in the pool are randomly chosen

• Augmented data: artificially created data are added to the training set. These are usually
obtained by randomly deforming the original data or by adding noise to them.

A alternative approach is to use unsupervised layers. In the architecture then, we have to put:

Cascaded networks of unsupervised layers trained one after the other
+

Final classification layer

→ after unsupervised training layer-by-layer, the whole network is finally trained with a few iterations
of error back-propagation.

8.3 Information bottleneck & unsupervised learning

Now, consider this example. We have to move in a new house, but in the new house the library is
way smaller that in the previous house. Hence, we have to save only the most relevant part of the
information (the most relevant book) and throw away the others:

This is basically the problem called information bottleneck.3

3cfr. DJ Strouse and David Schwab, The deterministic information bottleneck, 2016 http://arxiv.org/abs/1604.00268
and the related article https://www.inference.vc/representation-learning-and-compression-with-the-information-bottleneck/

109

http://arxiv.org/abs/1604.00268
https://www.inference.vc/representation-learning-and-compression-with-the-information-bottleneck/

Chapter 8. Deep learning 8.3. Information bottleneck & unsupervised learning

In order to decide which aspects of observed data are relevant information, and what aspects
can be thrown away, we can use two balancing criteria:

• compactness of representation, measured as the compressibility : number of bits needed to store
the representation, and

• information the representation retains about some behaviorally relevant variables.

But this pretty much assumes a supervised learning setting, that is, it is assumes we know what the
behaviorally relevant variables are and how they are related to observed data, or at least we have to
have data to learn or approximate the joint distribution p(x, y) between observed and relevant variables.
The question remains how could one possibly do something like this in the unsupervised, or at least
semi-supervised setting. How we can solve it:

• Using statistics, maximizing entropy
– Coding theory
– Stochastic complexity and minimum description length

• Minimizing errors (e.g., ||t− a||2):
– Autoencoders
– PCA
– Rate-distortion theory

There two most popular unsupervised learning techniques that try to solve this problem are:

• Maximum likelihood

Maximum (marginal) likelihood looks at the marginal distribution of observed data p(x), and tries
to build a model q(x) that approximates this in the KL[p|q] sense. The representations we then
use are often extracted from the conditional distributions of some hidden variables y conditioned
on observations q(y|x).

An important fact to notice is that the same marginal model q(x) can be represented as the marginal
of an infinite number of joint distributions q(x, y) = q(y|x)q(x). You can represent a Gaussian q(x)
as just a Gaussian, without hidden variables, as the end-point of a Brownian motion, or even as
the output of some weird nonlinear neural network with some noise fed in at the top. Therefore,
unless we have some other assumptions, the likelihood alone can’t possibly tell apart these
different representations.

• Autoencoders

The same criticism to maximum likelihood applies to other unsupervised criteria, for example,
autoencoders or denoising autoencoders (DAE).

DAE learns about the data distribution p(x), and it will build representations that are useful to
solve the denoising task. It is related to the information bottleneck in that it solves the same
trade-off between compression and retaining information.

However, instead of retaining information about behaviorally relevant variables, it tries to retain
information about the data x itself. This is really the key limitation, as it cannot (without
further assumptions) tell which aspects of the data are behaviorally relevant and which
aren’t. It has to assume that everything is equally relevant.

To summarise, a key limitation of using unsupervised criteria for representation learning is the following:

Maximum likelihood (or autoencoding), without strong priors, is the same as assuming that
every bit, each pixel, of your raw observed data is equally relevant behaviourally.

Hence, to learn behaviorally useful representations in a fully unsupervised way, we need priors and
assumptions about the representation itself. Sometimes these priors are encoded in the architecture
of neural networks, sometimes they can be incorporated more explicitly.

But let’s analyze more in depth the second structure we introduced: the autoencoders.

8.3.1 Autoencoders

An autoencoder is a special case of a multi-layer perceptron charcterized by two aspects:

110

Chapter 8. Deep learning 8.3. Information bottleneck & unsupervised learning

• Structure: number of units in the input layer = number of units in the output layer > number of
hidden units

• Learned task: an autoencoder is trained to approximate the identity function (= replicate its
input at the output)

An autoencoder is not a classifier!

What is interesting in autoencoders is not the output value (is a lower-quality approximation to the input)
but the pattern present on the hidden layer. Since we don?t use any target (the target coincides
with the input), the autoencoder task is unsupervised (sometimes termed “self-supervised”).

Example: learned features from a set of images:

Example: recognizing handwritten digits

Another example of an autoencoder for learning features from symbolic data is the one used to diagnose
Lyme disease from patient records. The problem in this case is that many features (observed signs and
symptoms) are binary and very sparse. How to learn them:

It has been proved that an autoencoder with linear activations learns the principal components.
This is because the objective is the mean squared reconstruction error of a lower-rank representation, the
same as PCA.

111

Chapter 8. Deep learning 8.3. Information bottleneck & unsupervised learning

8.3.2 Denoising autoencoders (DAEs)

The aforementioned DAEs are trained with random values (noise) added to the training set and, in
training, noise is averaged out. In operation, the resulting network is more stable (“robust”) to noise.

8.3.3 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that
can learn a probability distribution over its set of inputs. In figure we can see the difference between
a discriminative and a generative (this case) structure:

RBMs were initially invented under the name Harmonium by Paul Smolensky in 1986, and rose to
prominence after Geoffrey Hinton and collaborators invented fast learning algorithms for them in the mid-
2000. RBMs have found applications in dimensionality reduction, classification, collaborative filtering,
feature learning, topic modelling and even many body quantum mechanics. They can be trained in either
supervised or unsupervised ways, depending on the task.

As their name implies, RBMs are a variant of Boltzmann Machines. The “unrestricted” BMs have
the following characteristics:

• binary-valued units

• bi-directional connections

• symmetric weight (equal in the two directions): a pair of nodes from each of the two groups of units
(commonly referred to as the “visible” and “hidden” units respectively) may have a symmetric
connection between them

• general topology (feedback possible)

• no connections between nodes within a group

• “unrestricted” Boltzmann machines may have connections between hidden units.

The restricted version has the limitation that its topology must be a bipartite graph, and this makes
it more tractable4

Called v = [vi] and h = [hi] the visible and hidden unit activation values, wi,j the weight between vi and
hj , ai and bi the biases of visible and hidden units, we can then we can define an “energy” that is:

Then, the probability of any possible network state is

4This restriction allows for more efficient training algorithms than are available for the general class of Boltzmann
machines, in particular the gradient-based contrastive divergence algorithm.

112

Chapter 8. Deep learning 8.4. Deep Neural Networks

Since intra-layer connections are not present, probability of activation of one unit does not depend on
that of other units in the same layer – only in the other layer:

To train a RBM we use an algorithm called contrastive divergence which uses random sampling from
the probabilities (computed as above):

This does not optimize any explicit objective function!

8.4 Deep Neural Networks

A Deep Belief Network (DBN) is a sequence of Restricted Boltzmann Machines (RBMs), in
which each RBM can be trained independently of the following ones (greedy strategy) and the last
layer can be a classifier.

Deep networks can be built out of RBMs, but also out of autoencoders. Autoencoders have been found
to be less insensitive to random noise.

Training RBMs of large size is not simple, but there are tricks to make the task easier.

8.4.1 Examples of successful deep networks

Deep Belief Networks (2006) Fully connected multi-layer perceptrons whose layers are trained as
“restricted Boltzmann machines” or as “autoencoders”. It is the first model of the recent deep learning
wave.

ImageNet competition ImageNet is an online resource with millions of images tagged with nouns
from the WordNet ontology. It is also a competition with challenges that were consistently won by deep
neural networks:

113

Chapter 8. Deep learning 8.4. Deep Neural Networks

AlexNet (2012) This convolutional network considerably improved the current state-of-the-art per-
formance in the ImageNet competition using 60 million parameters, 650 000 neurons, 5 convolutional
layers and 3 fully connected layers with 1000-unit softmax as the output:

VGG networks (2014) This convolutional network by the Visual geometry Group (VGG) at Oxford
was based on solving a localization and a classification task using depth (achieving 1st and 2nd places in
the Imagenet challenge 2014, respectively). The depths of 16 and 19 layers proved to be the best:

114

Chapter 8. Deep learning 8.4. Deep Neural Networks

GoogLeNet (2015) Instead of simply going in depth, Google built a network by composing several
replicas and variants of an “inception module” that included several alternative convolutional layers
(with different topologies) and then max pooling. Around 100 layers and yet an order of magnitude less
parameters than AlexNet:

Microsoft ResNet (2015) Based on “residual blocks” which learn the difference between input and
its transformed version (less variability, less information, easier to learn):

Generative Adversarial Nets (2014) These nets are not designed for winning ResNet challenges

Twin model made of two multi-layer perceptrons:

• A generative network that produces examples from a learned probability distribution

• A discriminative model that tries to classify both the training examples and the artificial samples
generated

→ Useful for approximating the data (e.g., generating art)

115

Chapter 8. Deep learning 8.4. Deep Neural Networks

8.4.2 Frameworks, languages, libraries

8.4.3 Tain deep networks without supercomputers

Training a deep network requires using training sets with more than millions of observations, optimizing
millions of parameters and employing as many computing cores as possible (maybe GPU) for days or
weeks.

Some popular deep networks are available as off-the-shelf components in software libraries. They
are pre-trained for specific tasks so any user can employ them without having to do the optimization:

Directly using pre-trained networks works if your task is the same as the original task on which the
network was trained. There are many networks available for tasks such as locating regions-of-interest for
object tracking, for example the R-CNN:

To fine-tune a pre-trained network works if your task is similar as the original task on which the network
was trained:

• It is necessary that in your task
– the input and output data types are the same (e.g., input = images, output = classes)
– the input and output sizes are the same

• as the original task on which the network was trained
– Get a pre-trained network
– Set a small learning rate η
– Train the network on your data set

116

Chapter 8. Deep learning 8.4. Deep Neural Networks

Transfer learning from a pre-trained network works if your task is similar as the original task on which
the network was trained (as fine tuning), but with some differences:

• It is necessary that in your task
– the input data type is the same (e.g., images)
– the input size is the same

• as the original task on which the network was trained.
– Get a pre-trained network
– Remove the final layers
– Train a shallow network using the features provided by the remaining layers using
your data set

Matlab’s deep learning toolbox contains a lot of pre trained models like:

117

Chapter 8. Deep learning 8.4. Deep Neural Networks

1 AM DAVI DSTUZ
14thMAY2017

Notes on Goodfellow's "Deep Learning" Textbook
ln this article, 1 collect my notes on lan Goodfellow's Deep Learning textbooke?. While the basic chapters are

not included, the notes can be understood as short summaries of the corresponding chapters.

lan Goodfellow'sc:? Deep Learningc:? textbook quickly became a standard for generations ta corne. Although I was intreduced ta
most of the cencepts a few years earlier - mainly through seminars at RWTH Aachen University-, 1 still took the chance and read
most of the chapters. ln this article, 1 want ta present some of my notes I took while reading the textbook. Note that an online
version of the book is available herec:?.

As I was familiar with the basics of machine learning and feed-forward neural networks, 1 started with chapter 7. Additionally, 1
skipped chapters 12, 13 and 14 as they are of less interest for me.

Cha pter Notes
Click on a chapter ta open the corresponding notes.

1. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 7, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rn i ng-textbook/#pa nel-1580681411-3615)

ln chapter 7, Goodfellow et al. discuss several regularization techniques for deep learning in detail, and give valuable
interpretations and relationships between them. They also revisit the goal of regularization. ln particular, they characterize
regularization as an appreach ta trade increased bias for reduced variance. The ultimate goal is ta take a model where
variance dominates the errer (e.g. overfitted models) and reduce the variance in the hope ta only slightly increase the bias. ln
the following, some regularization techniques are discussed, focussing on the practical insights previded by Goodfellow et al.
instead of describing the techniques in detail.

Norm regularization (L2 and L1 regularization). Usually only the weights are regularized, not the biases. Therefore, it might
also be interesting to regularize the weights in different layers differently streng. Two useful interpretations of L2
regularization are the following:

■ L2 regularization shrinks the weights du ring training. However, Goodfellow et al. also show that components of the
weights that correspond ta directions that do not contribute ta reducing the cost are decayed away faster than more
useful directions. This is the result of the analysis of the eigenvectors and eigenvalues of the Hessian matrix (assuming a
local, quadratic and convex approximation of the cost function).

■ Using L2 regularization, the training set is perceived to have higher variance. As a result, weight components
corresponding ta features that have low covariance with the target output compared to the perceived variance shrink
faster.

Data augmentation. Goodfellow et al. briefly discuss the importance and influence of data augmentation to increase the size of
the training set. Unfortunately, they give little concrete examples or references on this tapie. They mostly focus on adding
noise to either the input units or the hidden units. ln a separate section on noise rebustness, they also discuss the possibility to
add noise to the weights in order ta make the final model more rebust to noise. Later this tapie is also related to adversarial
training, where training samples are constructed to "fool" the network while being similar to existing training samples. Here,
as well, they do not give many concrete examples.

Early stopping. Beneath discussing the interpretation of early stopping as regularizer, Goodfellow et al. also focus on the
preblem utilizing early stopping while still being able to train on the full training set (as early stopping requires a part of the
training set as validation set). The first approach discussed involves retraining the model on the full training set and training
for appreximately as many iterations as before when training with early stopping. The second appreach fine-tunes the model
on the full training set and stops when the training errer reaches the training errer when training was stopped using early
stopping.

Dropout. Goodfellow et al. discuss the two important interpretations: drepout as bagging, and drepout as regularizer. ln the
first case, the most valuable insight previded is how to get the advantage of training with drepout at testing time, i.e. how to
appreximate the ensemble prediction.

118

Chapter 8. Deep learning 8.4. Deep Neural Networks

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 8, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rning-textbook/#pa nel-1580681411-3618)

In chapter 8, Goodfellow et al. discuss optimization for deep neural networks. In particular, they focus on three different
aspects:

1. How learning differs from classical optimization;
2. Why learning deep neural networks is difficult;
3. And concrete optimization techniques (both "fixed" learning rate and adaptive learning rate) as well as parameter

initialization schemes.

How learning differs from classical optimization. One of the most important difference between learning and optimization is
that learning tries to indirectly optimize a (usually) intractable measure while for optimization the goal is to directly optimize
the objective at hand. In learning, the overall goal is to minimize the expected generalization error, i.e. the risk. However, as the
generating distribution is usually unknown (and/or intractable), the empirical risk on a given training set is minimized instead.
Furthermore, in learning, the empirical risk is usually not minimized directly, for example if the loss is not differentiable.
Instead, a surrogate loss is minimized and optimization is usually stopped early to prevent overfitting and improve
generalization. This is in contrast to classical optimization where the objective is usually not replaced by a surrogate objective.
Lastly, in learning the optimization problem can usually be decomposed as a sum over the training samples.

Due to computational limits and considerations regarding generalization and implementation, researchers have early argued
about so-called stochastic (mini-batch) optimization schemes. This discussion is usually specific to the task of learning and
cannot be generalized to classical optimization. Some of the arguments made by Goodfellow et al. are summarized in the
following points:

1. The standard error of a mean estimator is Jr;, where er is the true standard deviation and n the number of samples.

Thus, there is less than linear returns in using more samples for estimating statistics (e.g. the gradient).
2. Small batches can offer regularization effects due to the introduced noise. However, this usually requires a smaller

learning rate and induces slow learning.

Why learning deep neural networks is difficult. Goodfellow et al. discuss several well-known problems when training deep
neural networks. However, they also give valuable insights of how these problems are related and approached in practice. The
obvious argument is that used optimization techniques assume access to the true required statistics, such as the true
gradient. However, in practice, the gradient is noisy and usually estimated based on stochastic mini-batches. Furthermore, the
problem can be ill-conditioned, i.e. the corresponding Hessian matrix may be ill-conditioned. Goodfellow et al. provide an
intuitive explanation based on a second-order Taylor expansion of the gradient descent update. Then, it can easily be shown
that a gradient descent update of -Eg, with g begin the gradient, adds ½E2

g
T Hg - Eg

T
g to the cost. However, this may get

positive. In particular, Goodfellow et al. describe the case that g
T

g stays mostly constant during training while g
T Hg may

increase by an order of magnitude. They also describe that monitoring both values during training might be beneficial (the
former is also useful to detect whether learning has problems with local minima).

Another important discussion provided by Goodfellow et al. is concerned with the importance of local minima and saddle
points. The main insight is that in high-dimensional spaces, local minima become rare and saddle points become much more
frequent. This can be explained by the corresponding Hessian matrix. For local minima, all eigenvalues need to be positive,
while for saddle points, both positive and eigenvalues are present. Obviously, the latter case becomes more frequent in high­
dimensional spaces. Furthermore, local minima are much more likely to have low cost. This, too, can be explained by the
Hessian being more likely to have only positive eigenvalues in low cost areas. Therefore, in high-dimensional spaces, saddle­
points are the more serious problem in learning. Still, both cases induce a difficulty and require optimization methods to be
tuned to the specific learning task.

Lastly, Goodfellow et al. discuss the case of cliffs in the energy landscape corresponding to the learning problem. In particular,
cliffs refer to extremely steep regions (which may occur suddenly in more or less flat regions). These cliffs usually cause
extremely high gradient and may result in large jumps made by the gradient descent update, potentially increasing the cost.
However, they also provide a simple counter-measure (see Chapter 11): gradient clipping. Gradient clipping is usually done by
either clipping the individual entries of the gradient vector at a maximum value, or clipping the gradient vector as whole at a
specific norm. Both approaches seem to work well in practice.

Basic optimization techniques. As basis for the remaining chapters, Goodfellow et al. discuss stochastic gradient descent with
momentum as well as Nesterov"s accelerated gradient method. Details can be found in the chapter. Especially, the detailed
explanation of the momentum term can be recommended.

119

Chapter 8. Deep learning 8.4. Deep Neural Networks

Some interesting arguments made by Goodfellow et al. concern the convergence rate. It is well known that the convergence
rate of stochastic gradient descent in the strictly convex case is O (½).However, the generalization error cannot be reduced
faster than O (½) such that, from the machine learning perspective, it might not be beneficial to consider algorithms offering
faster convergence (as this may correspond to overfitting).

Weight initialization schemes. Goodfellow et al. discuss several weight initialization schemes without going into too much
details. Instead of looking at the individual schemes, value can be found in the discussed heuristics - especially as they
explicitly state that initialization (and optimization) is not well understood yet. The following presents an unordered list
detailing some of the discussed heuristics:

■ An important aspect of weight initialization is to break symmetry, i.e. units with the same or similar input should have
different initial weights as otherwise they would develop very similarly during training. This motivates random
initialization using a high-entropy distribution - usually Gaussian or uniform.

■ Biases are usually initialized to constant values. In many cases, 0 might be sufficient, however for saturating activation
functions or output activation function non-zero initialization should be considered.

■ The right balance between large initial weights and not-too-large initial weights is important. While too large weights may
cause gradient explosion (if no clipping is used), large weights ensure that activations and errors (in forward and
backward pass, respectively) are still numerically significant (i.e. distinct from 0).

■ Independent of the initialization scheme used, it is recommended to monitor the activations and gradients of all layers on
individual mini-batches. If activations or gradients in specific layers vanish, the scale or range of initialization may need to
be adapted.

Adaptive learning rate techniques. Goodfellow et al. discuss several techniques including AdaGrad, Adam and RMSProp (with
and without momentum). However, they are not able to answer the question which of the techniques is to be preferred.

Meta algorithms. Finally, Goodfellow et al. discuss a set of meta algorithms to aid optimization. The most interesting part is
concerned with batch normalization. In particular, they are able to provide an extremely intuitive motivation. Using any
gradient descent based optimization technique, the computed updates for a particular layer assume that preceeding layers do
not change - which of course is wrong. They also discuss that batch normalization - through normalizing the first and second
moments - implicitly reduces the expressive power of the network, especially when using linear activation functions. This
results in the model being easier to train. To avoid the restrictions in expressive power, batch normalization applies a
reparameterization to allow non-zero mean and non-unit variance.

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 9, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rn i ng-textbook/#pa nel-1580681411-3632)

In chapter 9, Goodfellow et al. discuss convolutional networks in quite some detail. However, instead of focussing on the
technical details, they discuss the high-level interpretations and ideas.

For example, they motivate the convolutional layer by sparse interactions, parameter sharing and equivariant representations.
With sparse interactions, they refer to the local receptive field of individual units within convolutional networks (as the used
kernels are usually small compared to the input size). Parameter sharing is achieved by using the same kernel at different
spatial locations, such that neighboring units use the same weights. In this regard, some of the discussed alternative uses of
convolution in neural networks are interesting. For example tiled convolution where different kernels are used for neighboring
units by cycling through a fixed number of different kernels. Unshared convolution is also briefly discussed. Finally, equivariant
representation refers to the translation invariance of the convolution operation.

Regarding pooling, they focus on the invariance introduced through pooling. However, they do not discuss the different pooling
approaches used in practice. Unfortunately, They also don't give recommendations of when to use pooling and which pooling
scheme to use. In contrast, they discuss the interpretation of pooling as infinitely strong prior. An interesting interpretation
where pooling is assumed to place an infinitely strong prior on units invariant to local variations (like small translations or
noise). In the same sense, convolutional layers place an infinitely strong prior on neighboring units having the same weights.

Finally, the importance of random and unsupervised features is briefly discusses. Here, an interesting reference is [1] where it
is shown that random features work surprisingly well.

They conclude with a longer discussion of the biological motivation of convolution al networks given by neuroscience. While
most of the discussed aspects are well-known, it is an interesting summary of different aspects motivating research in
convolutional networks. Some of the main points is to distinguish simple and complex cells, and the simple cells in particular
can often be modeled using Gabor filters. Another interesting insight is the low resolution used by the human eye. Only
individual locations are available in higher resolution. Unfortunately, Goodfellow et al. do not provide many references how this
model of attention can be implemented in modern convolutional networks.

[1] AM. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, A Ng. On random weights and unsupervised feature learning. ICML, 2011

120

Chapter 8. Deep learning 8.4. Deep Neural Networks

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 10, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rning-textbook/#pa nel-1580681411-3625)

In chapter 11, Goodfellow et al. give an introduction to recurrent neural networks as well as corresponding further
developments like long short-term memory networks (LSTM). During their discussion they focus on three different schemes
(Goodfellow et al. call it "patterns") of recurrent neural networks (of which the first two schemes are illustrated in Figure 1):

■ Recurrent neural networks producing an output at each iteration and the hidden units are connected through time.
■ Recurrent neural networks producing an output at each iterations where the output is propagated to the hidden units in

the next time step.
■ Recurrent neural networks that read a complete sequence and then produce a single output.

(http://davidstutz.de/word press/wp-

content/uploads/2017 /01/goodfel low_ 10 _rnn _ 1.jpg)

(http://davidstutz.de/wordpress/wp-content/uploads/2017 /01/goodfellow_l0_rnn_2.jpg)

Figure 1 (click to enlarge): Recurrent neural network where the hidden units are propagated through time (left) and where only the output is

propagated through time (right). As detailed by Goodfellow et al., the second option represents strictly lower expressiveness in terms of which

functions can be modeled.

The key idea that makes recurrent neural networks interesting, is that the parameters (i.e. W, U, V ...) are shared across time,
allowing for variable length sequences to be processed. In addition, parameter sharing is important to generalize to unseen
examples of different lengths. The general equations corresponding to the first scheme are as follows:

a(t) = b + Wh(t-i) + Ux(t)

h (t)
= tanh(a(t))

o(t) = c + Vh(t)

fj(t) = softmax(o(t))

Relating to Figure 1, on top of the output o(t) a loss L(t) is applied which implicitly performs the softmax operation to
compute i)(t) and computes the loss with regard to the true output y(t).

Recurrent neural networks are generally trained using error backpropagation through time, which describes error
backpropagation applied to the individual networks starting from the last time step and going back to the first time step. As
the parameters across time are shared, the gradients with respect to the involved parameters represent sums over time. For
example, regarding W the gradient is easily derived (by recursively applying the chain rule) as

v'wL = �t �i (8fii) v'w (•ihi
t)

8h,

when considering the first model of Figure 1.

121

Chapter 8. Deep learning 8.4. Deep Neural Networks

While the presented recurrent network is shallow - having only one hidden layer - deep recurrent neural networks can add

multiple additional layers. Interestingly, one has many options of how these additional layers are connected through time.

Goodfellow et al. illustrate this freedom using Figure 2. Note that the black square indicates a time delay of one time step for

unfolding (see chapter 10.1 for details) the model.

(http://davidstutz.de/word press/wp-

content/u ploads/2017 /01/ goodfellow _ 10 _rn n _ va ria nts.jpg)

Figure 2 (click to enlarge): Examples of possible deep recurrent network architectures.

Towards the end of the chapter, Goodfellow et al. focus on learning long-term dependencies. The described problem

corresponds to exploding or vanishing gradients (with respect to time) when training recurrent neural networks for long

sequences. Beneath simple techniques such as gradient clipping (also see chapter 8), several model modifications are

discussed that simplify learning long-term dependencies. Among these models, Goodfellow et al. also discuss long short-term

memory (LSTM) models. Other approaches include skip connections and leaky units.

I. Goodfellow, Y. Bengio, A. Courville. Deep Leaming. Chapter 11, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rning-textbook/#pa nel-1580681411-3634)

Chapter 11 is among the most interesting chapters for deep learning practitioners that already have some background on the

involved theory and algorithms. What Goodfellow et al. call "Practical Methodology" can best be described as a loose set of tips

and tricks for approaching deep learning problems. They give the following, general process that should be followed:

1. Define the problem to be solved including metrics used to access whether the problem was solved; it is also beneficial to

define expected results in terms of the chosen metrics.

2. Get a end-to-end prototype running that includes the selected metric.

3. Incrementally do the following: diagnose a component (or aspect) that causes the system to under perform (e.g.

hyperparameters, bugs, low-quality data, not enough data, model complexity etc.) and fix it.

Surprisingly, this approach has many parallels with modern, agile software engineering principles (e.g. prototyping, iterative

development, risk focus).

Goodfellow et al. then discuss some of these aspects in detail. The most interesting points are made on diagnosing a running

end-to-end system:

■ Visualize the results: do not focus on the quantitative results in terms of the selected metrics, also visualize the results to

asses them qualitatively. This also includes looking at examples that are considered very difficult or very easy.

■ Always monitor training and test performance: also discussed in chapter 7, training and test performance may give

important clues regarding hyperparameters or regularization such as early stopping. However, it might also help to

decide whether bugs cause problems or underfitting/overfitting is a problem.

■ Try a tiny dataset: try a smaller or easier training set; this might be helpful to see whether bugs exist.

■ Monitor activations and gradients: monitoring the activations may provide clues about the model complexity and

activation functions. Together with monitoring the gradients, e.g. the magnitude, might be helpful to asses optimization

performance, problems with the hyperparameters etc.

I. Goodfellow, Y. Bengio, A. Courville. Deep Leaming. Chapter 15, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows- I
deep-lea rning-textbook/#pa nel-1580681411-3639)

1
In Chapter 15, Goodfellow et al. consider representation learning, focussing on unsupervised pre-training. Specifically, they

discuss when and why unsupervised pre-training may help the subsequent supervised task. The two discussed interpretations

are:

122

Chapter 8. Deep learning 8.4. Deep Neural Networks

■ Unsupervised pre-training acts as regularizer by limiting the initial parameters to a specific region in parameter space.
■ Unsupervised pre-training helps to learn representation characterizing the input distribution; this may help learning

mappings from input to output.

Regarding the first interpretation, it was originally assumed to help optimization by avoiding poor local minima. However,
Goodfellow et al. emphasize that it is known by now that local minima aren't a significant problem in deep learning. That may
also be one of the reasons why unsupervised pre-training isn"t as popular anymore (especially compared to supervised pre­
training or various forms of transfer learning). However, unsupervised pre-training may make optimization more deterministic.
Goodfellow et al. specifically argue that unsupervised pre-training causes deep learning to consistently reach the same
"solution". This suggests that unsupervised pre-training reduces the variance of the learned estimator. It is hard to say when
unsupervised pre-training is beneficial when using this interpretation.

The second interpretation gives more clues about when unsupervised pre-training may be beneficial. For example, if the initial
representation is poor. Goodfellow et al. name the example of word representations and also argue that there is less benefit
for vision tasks as discrete images already represent an appropriate representation of the data. When thinking of unsupervised
pre-training (or semi-supervised training) as identifying the underlying causes of the data, success may depend on the causal
factors involved and the data distribution. For example, assumptions such as sparsity or independence may or may not be
present regarding the causes. Furthermore, from a uniform data distribution, no useful representation can be learned. From a
highly multi-modal distribution, unsupervised pre-training may already identify the different modes without knowing the
semantics.

Overall, the chapter gives a good, high-level discussion of unsupervised pre-training and representation learning in general
without going into algorithmic details. Two important takeaways are the two presented interpretations that can be used to
reason about unsupervised pre-training.

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 16, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-learning-textbook/#panel-1580681411-3642)

In Chapter 16, Goodfellow et al. briefly recap directed and undirected graphical models including d-separation, factor graphs
and ancestral sampling. However, I found that there are better textbooks or chapters on graphical models. A similarly brief
introduction can be found in [1] and an extensive discussion is available in [2].

In the end, they relate graphical models to deep learning yielding some interesting insights. While traditional graphic models
usually have fewer unobserved variables and tend to have sparse connections such that exact inference is possible, the deep
learning approach usually focusses on having many hidden, latent variables with dense connections in order to learn
distributed representation. Exact inference is usually not expected to be possible and even marginals are not tractable. It is
usually sufficient to be able to draw approximate samples and efficiently compute the gradient of the underlying energy
function (while the energy itself does not need to be tractable).

Finally, they briefly introduce restricted Boltzmann machines (RBMs) (note that there might be more detailed discussions
available). An RBM is an energy-based model with binary hidden and visible variables, hand v, respectively:

E(v,h) = -bTv_cT h-vTWh

where b, c and Ware real-valued parameters that are learned. Note that there is no interaction between any two hidden
variables or any two visible variables (as illustrated by the -bT v and -cT h terms). Instead, only parts of visible and hidden
variables are, usually densely, connected through the weight matrix W. The individual conditional distributions are easily
computed by:

Overall, this allows for efficient Gibbs sampling. Furthermore, the energy is linear in all of its parameters such that the
derivatives are easy to derive.

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[2] D. Koller, N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 17, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rning-textbook/#pa nel-1580681411-3645)

In chapter 17, after discussing structured predictions using graphical models in Chapter 16, Goodfellow et al. briefly introduce
basic Monte Carlo methods for sampling. While these methods might not be new to most students in computer vision and
machine learning, I found a repetition of the concepts quite useful. Nevertheless, I want to emphasize that there are more

123

Chapter 8. Deep learning 8.4. Deep Neural Networks

appropriate readings regarding the details of Monte Carlo methods.

The basic idea of Monte Carlo Sampling is NOT to sample from a distribution, but to approximate the expectation of a function
f(x) under a distribution p(x). If it is possible to draw from p(x), the basic approach is to use the estimator

s = l. "°'n f(x(i))n n L..,i=l

with samples x (il drawn from p(x). This estimator is not biased, and given finite variance, i.e. Var[f(x(il)] < oo, the
estimator converges to the true expected value for an increasing number of samples. If it is not possible to sample from p(x),
an alternative distribution q(x) can be introduced and the same estimator can be used:

A _ l.
"°'n p(x(il)J(x(i)) (i) Sn - n L..,i=l q(x(i)) for X ~ q

The estimator is still unbiased, and the minimum variance is obtained for

q*(x) =

p(x)lf(x)I

where Z is the partition function. Generally, low variance is achieved for q(x) being high whenever p(x) lf(x) I is high.

Goodfellow et al. also briefly discuss Markov Chain Monte Carlo for sampling and Gibbs Sampling. However, I found that there
are better resources to study these techniques.

I. Goodfellow, Y. Bengio, A. Courville. Deep Leaming. Chapter 18, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rning-textbook/#pa nel-1580681411-3647)

In Chapter 18, after briefly introducing Monte Carlo methods in chapter 17 and graphical models in Chapter 16, Goodfellow et
al. discuss the problem of computing the partition function. Most (undirected) graphical models, especially deep probabilistic
models, are defined by an unnormalized probability distribution p(x), often based on an energy. Computing the normalization
constant Z, i.e. the partition function, is often intractable:

J p(x)dx

Another problem, is that the partition function usually depends on the model parameters, i.e. Z = Z(0) for parameters0.
Thus, the gradient of the log-likelihood (in order to maximize the likelihood) decomposes into the so-called positive and
negative phases:

Vologp(x;0) = Vologp(x;0) -VologZ (0)

Under certain regularity conditions (see the textbook for details), which can usually be assumed to hold for machine learning
models, the gradient can be rewritten as

VelogZ = Ex~p(x)[Velogp(x)]

The derivation for the discrete case is rather straight-forward by computing the derivative of log (Z) and assuming that
p(x) > 0 for all x. This identity is the basis for various Monte Carlo based methods for maximizing the likelihood. Also note
that the two phases have intuitive interpretations. In the positive phase, log (p(x)) is increased for x drawn from the data; in
the negative phase, the partition function Z is decreased by decreasing log (p(x)) for x drawn from the model distribution.

Following this brief introduction, Goodfellow et al. focus on the discussion of contrastive divergence. In general, contrastive
divergence is based on a naive Markov Chain Monte Carlo algorithm for maximizing the likelihood: For the positive phase,
samples from the data set are used to compute Ve log(p(x; 0)); for the negative phase, a Markov Chain is burned in to
provide samples {x1, ... , XM} used to estimate Ve log(Z) as

if z:f,::
1

V0logp(x (il;0)

As burning in a Markov Chain, initialized at random, in each iteration is rather computational expensive, contrastive divergence
initializes the Markov Chain using samples from the data set. This approach is summarized in Algorithm 1. Note that Gibbs
Sampling is used (see gibbs_sampling in Algorithm 1, details can be found in the textbook, Chapter 17).

contrastive_divergence(
E II step size

k II number of Gibbs steps

while not converged
sample a minibatch {x(l), ... ,x(m)}
g :=-;;: L7�1 Vologji(x(il,0)

124

Chapter 8. Deep learning 8.4. Deep Neural Networks

for i=l, ... ,M
\tilde{x}A{(i)} := xA{(i)}

for i = 1, .. . ,k
for j=l, ... ,m

5;U) :=gibbs_update(x(i))
g := g - -;;- I:;'.:,

1
v' 0 logp(x(il, 0)

0 := 0+Eg

This results in a convenient approximation to the expensive negative phase. However, it also introduces the problem of
spurious modes - regions with low probability under the data distribution but high probability under the model distribution.
Unless a lot of iterations are performed, a Markov Chain initialized with samples from the data set will usually not reach these
spurious models. Thus, the negative phase fails to suppress these regions. Overall, it might be likely to get samples that do not
resemble the data.

While contrastive divergence implicitly approximates the partition function (without providing an explicit estimate of it), other
methods try to avoid this estimation problem. Goodfellow et al. discuss approaches including pseudo-likelihood, score
matching and noise-contrastive estimation. For example, the main idea behind pseudo-likelihoods is that the partition function
is not needed when considering ratios of probabilities:

p(x)

p(y)
p(x)

p(y)

The same is applicable to conditional probabilities. These considerations result in the pseudo-likelihood objective:

where X-i corresponds to all variables except for Xi. Goodfellow et al. note that maximizing the pseudo-likelihood is
asymptotically consistent with maximizing the likelihood. The remaining discussed approaches often use similar approaches
for avoiding the partition function. Details can be found in the chapter.

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 19, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rning-textbook/#pa nel-1580681411-3653)

In Chapter 19, Goodfellow et al. discuss approximate inference as optimization. While concrete examples, especially regarding
the deep models discussed in Chapter 20, are missing, the main idea behind approximate inference is discussed in more detail.
As motivation, they illustrate why the posterior distribution, i.e. p(hlv) where v are visible and hare hidden variables, is
usually intractable in layered models. Figure 1 shows the discussed examples, corresponding to a semi-restricted Boltzmann
machine on the left, a restricted Boltzmann machine in the middle, and a directed model on the right. In all three cases the
posterior is intractable due to interactions between the hidden variables - directly or indirectly.

� 1 � (http,/ /da,;dst""·de/wocdpcess/w�

content/uploads/2017 /01/goodfellow _ 19 _ 1.jpg)

Figure 1 (click to enlarge): Illustration of three graphical models as commonly used for deep learning. In all three cases, the direct or indirect

interactions between hidden variables prevent the posterior from being tractable.

In order to approximate p(hlv; 0) with 0 being parameters, the main idea behind approximate inference is based on the
evidence lower bound C(v,0,q) on logp(hlv;0):

C(c,0,q) = logp(v;0) - DKL (q(hlv)lp(hlv;0))

Here, q is an arbitrary distribution defining the tightness of the lower bound. Specifically, if q and pare almost equal, the lower
bound becomes exact. This is due to the definition of the Kullback-Leibler divergence:

Rewriting the evidence lower bound using the definition of the Kullback-Leibler divergence and using basic logarithmic
identities gives:

C(v,0,q) = Eh~q[logp(h,v)] + H(q)

125

Chapter 8. Deep learning 8.4. Deep Neural Networks

with H(q) being the entropy. Inference can, thus, be stated as optimizing for the ideal q. When restricting the family of
distributions,£(v, 0, q) may become tractable.

Variational inference means to choose q from a restricted set of families. The mean field approximation defines q to factor as
follows:

q(hlv) = IL q(h; Iv)

In the discrete case, the distribution q can be parameterized by vectors of probability, resulting in a rather straight-forward
optimization problem. In the continuous case, calculus of variation is applicable. Researchers have early derived a general fix
point equation to use. Specifically, fixing all q(hilv) for j 'Ii, the optimal q(h; Iv) is given by the normalized distribution
corresponding to:

q(h;lv) = exp(Eh_,~q(h_,lv) [Iogp(v,h)l)

This equation is frequently referred to in practice wherever the mean field approximation is used.

Unfortunately, Goodfellow et al. discuss the discrete and continuous case of the mean field approximation in a rather technical
way given two specific examples not related to the deep models described in Chapter 20 (at least personally, I see no benefit in
having read the examples).

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. Chapter 20, MIT Press, 2016. (https://davidstutz.de/notes-on-goodfellows­
deep-lea rning-textbook/#pa nel-1580681411-3660)

In Chapter 20, Goodfellow et al. discuss deep generative models. First, a short note on the reading order for Chapters 16 to 20.
Chapter 16 can be skipped with basic knowledge on graphical models, or should be replaced by an introduction to graphical
models such as [1]. For chapter 17, discussing Monte Carlo methods, I recommend falling back to lecture notes or other
resources to get a more detailed introduction and a better understanding of these methods. In Chapter 18, the sections on the
log-likelihood gradient as well as contrastive divergence are rather important and should be read before starting with Chapter
20. Similarly, Chapter 19 introduces several approximate inference mechanisms used (or built upon) in Chapter 20.

The discussion first covers (restricted) Boltzmann machines. As energy-based model, the joint probability distribution is
described as

with

where U is a weight matrix and b a bias vector. The variables x are all observed in this simple model. Obviously, Boltzmann
machines become more interesting when introducing latent variables. Thus, given observable variables v and latent variables
h, the energy can be defined as

where R, Wand Sare weight matrices describing the interactions between the variables and band care bias vectors. As the
partition function of Boltzmann machines is intractable, learning is generally based on approaches approximating the log­
likelihood gradient (e.g. contrastive divergence as discussed in Chapter 18).

In practice, Boltzmann machines become relevant when restricting the interactions between variables. This leads to restricted
Boltzmann machines where any two visible/hidden variables are restricted to not interact with each others. As consequence,
the matrix Rand S vanish:

An interesting observation, also essential for efficient learning of restricted Boltzmann machines, is that the conditional
probabilities P(hlv) and P(vlh) are easy to compute. This follows from the following derivation:

P(hlv) = Pi,��;)

= -

1-.l.exp{bT v + cT h + vTWh}P(v) Z

= ;, exp{cT h + vTWh}

= ;, exp{Lj Cj hj + Lj
vT Wj hj}

126

Chapter 8. Deep learning 8.4. Deep Neural Networks

Where the definition of the conditional probability and the energy E(v, h where substituted. As the variables h are binary, we

can take the unnormalized distribution and directly normalize it to obtain:

P(hj = llv) = - .P(hj=l�v)

P (hj=Olv)+P (h;=llv

exp{cj+,TW:;}
exp{O}+exp{c;+vTW:;}

Efficient evaluation and differentiation of the unnormalized distribution and efficient sampling make restricted Boltzmann

machines trainable using algorithms such as contrastive divergence.

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

127

	Introduction
	Operators
	Machine learning problems
	Supervised learning
	Unsupervised learning
	ML techniques

	Perceptual problems
	Perceptual problems examples
	Data cleaning

	Learning problems
	Learning scenarios

	Linear threshold classifier
	Separable data requirement
	Learner model
	Activation functions

	Lab ``zero''

	Bayesian classification
	Probability theory
	Distribution and density
	Conditional probability
	Total probability theorem
	Bayes theorem

	Bayesian Decision Theory
	Decision and loss
	Quality evaluation of discrete decision set
	Quality evaluation of continuous decision set
	Bayes decision criterion

	Bayesian classifiers
	Minimum-error-rate classification
	Classifier model
	Naive Bayes classifier

	Lab Report 1 – Naive Bayes

	Linear regression
	One-dimensional LR
	LR as an optimization problem
	Solution of the 1D-LR problem

	1D-LR with offset
	The multi-dimensional linear regression problem
	Numerical issues
	Summary
	Lab Report 2 – Linear Regression

	Optimization
	Minimization problem
	Convex sets and functions
	Gradient and Hessian
	Minimum and convexity conditions
	Taylor polynomials

	Optimization algorithms
	Case 1 - Descent techniques
	Case 2 - Newton-Raphson method
	Case ``1.5'' - Hybrid method
	Case 0 - Direct search

	Statistical learning
	Statistics & parameter estimation
	Models
	Model parameter estimation
	Learning process

	Parametric methods
	Maximum Likelihood parameter estimation
	ML and MAP

	Non-parametric methods
	Nearest-neighbour classifiers
	k-Nearest-Neighbour classifier
	Decision trees
	Random forests

	Lab Report 3 – kNN Classifier

	Evaluation of classifiers
	Estimation of the generalization ability
	Statistical learning
	Sampling effects
	Bias/variance decomposition
	How to control generalization?

	Computational (empirical) estimates of generalization
	Resampling methods
	Cross-validation
	Leave-one-out cross-validation
	Bootstrap

	Empirical evaluation of classifiers
	Contingency tables
	Confusion matrix, accuracy and error rate
	The dichotomic case
	Dichotomic case: more indexes

	Neural Networks
	Brain and Neural Networks
	Biological inspiration
	Neural Network model

	Single layer neural networks
	Rosenblatt's perceptron (1950s)
	Perceptron learning algorithm
	Widrow and Hoff's Adaline (1960)
	Adaline learning algorithm (LMS algorithm)
	LMS with online learning
	LMS algorithm and MSE minimization
	Two further steps
	The linear separability problem

	Multilayer network
	Topologies, UAP and learning
	Sigmoid activation function
	Differentiability of activation functions
	Error back-propagation algorithm
	Output activation (softmax) layer for classification
	Information entropy and cross-entropy loss
	Cross-entropy objective with sigmoid activation
	Cross-entropy objective with softmax activation

	Lab Report 4 – Neural Networks

	Deep learning
	Depth and internal representation
	Convolutional neural networks
	CNN: Convolutional layer
	CNN: Pooling layer
	CNN: Output layer
	Training a CNN
	Regularization methods

	Information bottleneck & unsupervised learning
	Autoencoders
	Denoising autoencoders (DAEs)
	Restricted Boltzmann Machines

	Deep Neural Networks
	Examples of successful deep networks
	Frameworks, languages, libraries
	Tain deep networks without supercomputers

	David Stuz – Notes on Goodfellow's ``Deep Learning'' Textbook

