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Earning outcomes

The goal of the course is to provide methodologies and tools for
designing systems’ models to be used for control, estimation,
diagnosis, prediction, etc.

Different identification methods are considered, both in a “black
box” context (where the structure of the system is unknown),
as well as in a “grey box” (uncertainty on parameters) one.
Methods are provided for choosing the complexity of the mod-
els, for determining the values of their parameters, and to val-
idate them.

Moreover, state estimation problems are addressed and their
connections with control and identification are considered.
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Different models for dynamic systems and their applications:

e Parametric and non-parametric models

e Identification techniques for linear models.

e Nonlinear models. Examples and identification methods.
e Validation procedures.

e Introduction to state estimation.

e State estimation in the presence of disturbances.

e Kalman filter and its extension to the nonlinear case.

e Techniques for parameter identification of linear systems
in the presence of disturbances.
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strations of algorithms and equations.
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Examples of non-parametric models. Experimental identification of frequency response.
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Recap for discrete time system modelling of linear systems: difference equations, transfer functions.
Hybrid notation.

Black box modelling of linear discrete-time SISO systems

Some particular cases: Output Error vs equation error (ARX, ARMAX)

In/out general representation and corresponding prediction form.

Identification based on minimum prediction error.

Identification for ARX

least squares one-shot solution

recursive least squares method (hints on application to Adaptive control)
Characterization of inputs: persistence of excitation.

Mathematical programming (gradient-based and Hessian-based methods).
Application of mathematical programming to identification. The ARMAX case (and OE case)
Validation of models. How to choose complexity.

Cross-validation: Training/Validation/Test sets.

Whiteness tests

Statistical corrections of the cost (e.g.; Final Prediction Error)

Modelling non-linear systems: Nonlinear-ARX

Use of parametrized approximating functions (Neural nets, RBFs, etc.)

Hints on Approximating properties (Universal approximation, rate of approximation)
Linear in the parameters N-ARX models and least squares identification.

State Estimation, motivation and some examples.

Reminders for state equations and possibility of “state augmentation” for joint estimation of state
and parameters. Augmented-state estimation as an Identification method.

Luenberger observer (and Nonlinear generalization)

Kalman Filter and Extended K.F.
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1 Introduction

1 Introduction

1.1 What is estimation

Considering a system S. The inputs will be denoted by a u vector (u(t) for continuous-time systems and
u(k) for discrete-time systems), the state vector will be denoted bt @ and the output vector by y:

J 9 =yi=s1
%

Let’s consider, for example, u(t) = F(t) the input force and y(t) = p(t) the position. If we don’t have
immediate access to the velocity v, the computation of it it will be an estimation problem. We can
obtain it deriving the position p(t):

and we will have some additive noise:
y(k) = p(k) +n(k)
So, to estimate v we will have to derive y(k):
y(k+1) —y(k)
T

But as we see in the following figure, that’s not so trivial. In fact, taking two samples near in time, the
error contribution will be enhanced, but taking two samples far in time the result will be smoother w.r.t.
the actual v:

B
)

smaller T'

bigger T

Sometimes you want to pass from a transfer function T'(s) (time-continuous in this case) to the state
equations:

& = Fa(t) + Wu(t)

y = Gu(t)
In this case the state can represent physical quantities, but also could be an abstract representation

without any direct physical meaning, end even with these estimated abstract representations we can
stabilize a physical system closing the state-feedback loop correctly:

=

S T
fr 3

(= }—



1 Introduction 1.2 What is (parameter) identification

1.2 What is (parameter) identification

System identification instead is the art of making models. A very common model for a cart

M _|F

is the following one:
F=M-a=M-b(t)

But this is not the cart that we saw in the figure, it’s a model (even though also the one in the figure is
a model as well). We can even have other different models like:

{Ilfl = Ig(t)
Ty = HF(t)

where x; is the position and x5 is the position of the cart. Or, again, we can write:

—
®w | =

Is there a “best model”? It depends. For example, consider the problems of a model like this one:

F=DM-ot)

In this model, the parameter M is the mass of the cart, and we can have no tool in our lab in order to
measure it. In this case, if we have F' and v we can compute it.

11! We usually don’t have all the measurement tools for all the parameters and variables. !!!

Most of the models are parametric models, for example:

F(t) = K y(t) = Cy(t) = M (t)

M

C

Is this one a good model? Yes, but only until the spring does not break or that the it will be too hard too
pull (“saturation”), as if I push it. So, in these cases, the model changes, because non-linear effects
arise.

So, what a model can be used for? We need a model to control a system. Another reason could be to
simulate a system, or to predict its behaviour. These are not the only goals though. For example, a
model can be used for fault detection or to estimate state or parameters. Let’s consider the following
example:

T

h Y,
hole

Here, to identify the fault we have to compare the water input with the output and the water level. What
if we don’t know how much water is going out at a certain instant ¢t? We have to use a model in order to
identify anyway the entity of the fault.



1 Introduction 1.2 What is (parameter) identification

We can distinguish between two main categories:

e Physical models
scaled models like little cars,
batteries of RC circuits in order to model the behaviour of energy batteries

e Mathematical models
T(s)
state equations
ODEs

but we can have also other categories like:
e Graphical models
drawings
bode plots

As we already saw, we can divide as well between parametric and non parametric ones, having:

e Parametric models
WB (white boxes)
GB (gray boxes)
BB (black boxes)

e Non-parametric models

Assume you have an RC system .

O

TR
m< —_ >wy/

O

We can have as a mathematical model a parametric model like:
u=Ri+vy

but also the figure of the system that we put just before is a model as well (a graphical model). From
the mathematical model we can also obtain an ODE:

1 1
u=RCy+y—[t=RC,i=CyYl =9+ —-y=—-u
T T
and from this we can obtain:

1
T 1+4sT

T(s)

In this case we knew how the physical system was, we knew its components, and from this knowledge we
derived a math model (ODE, T'(s) etc...). This is what is called a gray box (GB). We can then explain
the previous dichotomy for parametric models:
e WB (white boxes): know structure, know parameter
e GB (gray boxes): known structure, unknown parameter values
e BB (black boxes): unknown structure, unknown parameter values, but we can just measure the
inputs and the outputs

Regarding black boxes, how we can act? We can, for example, assume that is a first order system, so
that a T'(s) that will fit his behavior will be like:

K
T 14 sT

T(s)

Is this a reasonable modeling? It depends, for example on the accuracy required (see the follwing figure).
We can test different orders in order to see which one fits our measured behavior:!

1In the following graph the actual behavior is in red, the model behavior in black and accuracy required in gray



1 Introduction 1.2 What is (parameter) identification

b
1. T(s) = 1 +0 (— 2 parameters)
a1 s
by + sb
2. T(s) = m (— 4 parameters)
bo + sby + s?b
3. T(s) 0 ! 2 (— 6 parameters)

T 1+ a15 + ass? + assd

So, the question is, which order is required? How many parameters are required to a consistent
modeling? In principle, the bigger si the number of the parameters, the better is the capability of
approximation for the black box. But in practice? Sometimes using too many parameters could be
dangerous or even wrong, obtaining a model that is worse than the one with less parameters.

Let’s take, for example, a very deep lake like the one in figure (measurements are in red and rough
interpolation in blue):

P, Il
AN Z

To measure how deep is it, you'll need some tools, for example a stone with a rope. You can measure
the rope length in different places. As seen in the figure, you will have a certain degree of uncertainty
and measurement error. If you take these measurements, interpolating with straight rows, you’ll have an
approximation like the one shown in figure, but you can smooth the result using polynomials:

P, (z)= Zn: a;s’
i=0

Let’s consider only two measurements:

N i
ST

You can use Py(z) (cyan) assuming as ao the LSE of the measurement. Or, using P;(x) (green) you
can obtain something like shown in figure. Let’s say, you can use a Pyo(x) (violet) that will exactly pass
through the points. In this case, this is even worse that the P; approximation. A P;.o9 will be better,
maybe something less precise but more generalizable. There is a tradeoff between the number of data
and the number of parameters (a good rule of thumb is to never use more parameters than data to
avoid lack of generalization, as shown with Py (z)).



2 The identification process

2 The identification process

The relevant aspects in building a model are:

1. What you is the use of the model (control, estimation, prediction...)
2. Understand what the input and the output (IN/OUT wu(t) and y(t)) will be
— possibly, the inputs that you want (measurable quantities and directly accessible)

3. Dataset accessibility (regarding the chosen IN/OUT): datasets have to be available a priori or
they can be obtained with experiments

— normally people don’t let you access directly the model, but they just give you datasets.
This can happen for different reason, for example in order to not stop a working plant in order to
perform identification, or to avoid you test it with treating inputs that can damage the plant

4. Decide the performance indexes with which you want to evaluate the quality of the system (you
have to decide what “good” does it means w.r.t. the model of system)

— For example, in simulation, we want the model output as close as possible to the actual
output. Consider a situation like this one

actual S ——

> model S

A “good” model will be a model that minimizes e(¢) in a reasonably “short” amount of time. In
order to evaluate this we can use, for examples, the co-norm, or the 2-norm (LSE) if you want
to “penalize big errors more”), or the maximum value of the norm if you want the biggest error
it will be the smallest possible):

N

N
o= lle®l =) lle(®|® Ji= max [le(k)]
k=1

k=1

You can chose the criteria w.r.t. to the single case:

J3 avoids this
N

=

z

e

e

= T

i~ é
Path following Path following on a bridge

J3 is the only one which assures to
not fall from the bridge

5. Decide which class of model is the suitable one. If we call M the class of the model S, it will
depend on the parameters of S, so M(0)

6. After we decided the class of the model, we have to design experiments for testing S

7. Then you have to make the experiments already designed (if the plant is available, w.r.t. step 3)
and record data from the experiments



2 The identification process 2.1 Experimental measurement

8. Before reasoning about the actual value of the parameters, we have to think about the complexity
of the model, for example the degree of the polynomials that we use. So we will analyse some
so-called meta-parameters

— for example ARX complexity (ARX stands for AutoRegressive eXogenous, a particular case
of ARM AX models)

9. After reasoning about the complexity of the model you have to use dataset (directly or given, w.r.t.
step 3) to minimize the cost w.r.t. the performance indexes decided, in order to perform the
parameter identification

10. Before actually using your model you can want to validate your model. You can ask yourself “Is
this a ‘good’ model?”. There can be some steps to reconsider, like “Is it the ‘best’ model that I can
obtain?”, or “Is it what i wanted at the beginning?”. So, you have to validate your model trying
to understand if the model is satisfactory

— if the model is satisfactory, stop the identification process. If the model is not, go back
and change some steps, e.g. you can design better experiments, change the class of the model, or
determine a different complexity of the model etc...

Sometimes steps 5 and 6 are switched: for example, some experiments are well suited to identify a specific
class of model. Sometimes steps 8, 9 and 10 are seen as a unique step.

2.1 Experimental measurement

The Bode plot a classic example of graphical model. Bode plot It is not just a parametric model, even
though we are used to think about it as associated to a some transfer function G(s):

»

4 Jcto) —» G |»

._Wll

M N
7T\ | ! >

Here, we don’t have the polynomials of the transfer function, but we know that there are some that
constitute the transfer function. Normally the plot is given in a logarithmic or dB scale. In University of
Genoa normally it is tradition indicate simply the values |G(jw)]| in a logarithmic scale 10log,, |G(jw)]
instead of using the dB scale 20log;, |G(jw)|). Regarding the phase of G(s), the x-axis is a linear
representation, while w is still in a logarithmic scale (as seen in the previous figure).

We normally assume that the system is linear (it obeys to the superposition law regarding inputs and
initial conditions) and it is asymptotically stable. Why are we supposing that is asymptotically stable?
Because the output of the system is composed by two parts, the forced output (null initial condition,
xo = 0) and the free output (null input, u = 0):

y(t) = yu=o(t) + ys ()
So, assuming that is asymptotically stable means that:

yu:O(t) t—_>>oo 0 V330



2 The identification process 2.1 Experimental measurement

So, if u(t) = M sin(wt), we will have a forced transient response and a forced permanent response:

yr(t) = yr, +ys,
—~—

—0

So, asymptotically, every element will go to 0 but the forced permanent response, that will define the
regime of the system:

= Yy, (t)

t—o00

yr () — 0 yr(t)

t—o0

So, probably, at the beginning you will not be able to record really clear data, but after a reasonable
time you will start to have some reasonable data, like a delayed amplification of the input:

A ut)

z
|
|
N ¢
7

amplification

After some time, you will be able to recognize a shifted amplified sinusoidal with the same frequency of
the input one:
Y, (t) = M|G(jw)|sinfwt + £G(jw) ]
——— ——

M, phase shift

So, we will be able to record the different amplitude M, and perform the following operation (see previous
figure as reference):
M
Giw)| = =L
G)] = 32
And, regarding the phase:

£G(j
yy (8) = MIGGW)|sin |w | ¢4+ 2EU2)
N

time delay

So (again, it could be useful to use as a reference the previous figure):

ZG(jw) = (t1 — to)w

But how much time we will need to wait in order to have the system at regime? The output behavior
will tell us: if it has a sinusoidal behavior, it is in regime. So, we will choose a frequency w, we will make
an experiment and we will register the values of |G(jw)| and ZG(jw) for that frequency. Then, we will
chose a different w. If we report these samples on a plot, we can interpolate them in order to guess the
corresponding Bode plot, at least a reasonable one, as the one in the following figure:
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Note: After identifying the system, normally you want to apply to it a control, normally with
a regulator and a feedback (R(s) and H(s) notation) as can be seen in the following figure:

\

— _ R(s) G(s)

H(s)

If the plant is instead unstable you cannot apply a direct control, you have to stabilize it
before. If you want to identify an unstable system you can start trying to control it but
trying not to make it “explode”.

2.2 Ad hoc or Taylor-mode methods

First order systems Consider a system such that

_ K
14T

G(s)

This is normally the situation in which we are when we have some physical knowledge, like for a RC'
circuit (— grey box model) with 7 = RC'. If you have to identify a system like this, from the obtained
G(s) you cannot have the knowledge of R and C, but only of their product 7. If you plot the Bode plot
of this system you will have something like the one shown in the following figure:
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We can also draw the exact
k plot, not only the nominal one,
if we know the 3dB margin

\ Il/y \ o

€

)2 —t— I

As we can see, we can draw some exact values, even though is mostly a qualitative-approximated plot.
That is possible because we can identify the parameters K and 7 with several methods:

e We can know the exact value of K because it is the regime response for u = sin(wt) for a reasonably
low frequency wiow s.t. |G(jwiow)| = K — frequency response analysis.

e Since we know that ZG(1/7) = —45°, we can try increasing values of w until ZG(w) = —45°. At
that point we will know that 7 = 1/w — frequency response analysis (be careful, it can explode
when you increase w if it’s not asymptotically stable).

e We can also compute K from the step response. We will be in a situation like the one in the
following figure:

A u) A
] — k y(t)

] ] »

v

YD=Yeo O+, (0 >y ()= K(1-€") 120

1

=0 ifinitial conditions =01, (= v, (1)

But how we can reach the &g = 0 requirement (null initial conditions)? For a RC' circuit, we will
have for example to discharge the circuit, the capacitors, and how we will make it? With null input,
but this is true only if it is an asymptotically stable system! The way to obtain initial condition
for such a system is then just let the input null for some time tya;t, and then put as input the step:

u(t) = 1(t — twait)

We will indicate ¢ — tyaj; as the 0 point, thanks to the time invariance of the response of the system.

After that, probably our output y(t) = ys(t) it will have some noise, so we will have to wait until
it will be reasonably constant. At regime, the variations in the value of y;(t) will give us the
uncertainty on the measurement of K.

But what if there is measurement noise? We can take different values K; and then doing the average
in order to reduce the effect of noise.

e From the step response of the asymptotically stable system we can also identify graphically the
value of 7, without a frequency response analysis:
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N 4

Let’s take the output:
yr(t) =K1 —e7)  £>0

and derive it: . P
gty =—e 7 - —

T t—0+ T

So, the slope of the tangent of y(07) = y;(0") will give us %, from which we can obtain 7. In this
case is normally better to use a ruler instead of using numerical values, because of the problems
linked to the numerical derivation process.

There is also a third method to determine 7 from step response. We can define a value of the
output such that:

A

[n |
-+

So:

T=—

But how we chose t? If it is too big, we will be at regime, so there will be a big problem, because
y = K and the formula just seen for 7 will not be defined. To identify correctly the time constant
7, t has to be chosen in the transient time-domain, not in the regime time-domain!

Also, another strong assumption of this method is the absence of measurement noise. But with
noise, it may happen to consider some values that is too big or too small w.r.t. what we need. To
solve this, we can take different values #; and then probably after doing an average between the 7;
obtained (while staying out of the regime time-domain for each ¢; !)

n-order systems We can solve the same problem for second order systems, dealing with the analytical
forms of the step response (it is more difficult for n > 2). It could be easier to use frequency response
analysis, but it will be difficult anyway. For n-order systems it is better to user not the Taylor-
made approach, but the least-squares approach (see Section 4).

10



3 SISO LDTI description

3 SISO LDTI description

In this section we will present the main Single Input Single Output (SISO) Linear Discrete-Time and Time
Invariant (LDTI) systems descriptions. But before we start, we have to make a parenthesis regarding the
notation we will use.

3.1 Hybrid notation

Let’s consider a SISO system as the one shown in this figure, in which we have continuous and discrete
values for the input and the output u(t), u(k), y(t),y(k) : 2

S y(t)

while for the discrete domain, we have
Yi(z) = G(2)U(z)

Let’s consider the system as asymptotically stable (it is sufficient but not necessary for our purposes,
it is a stronger hypothesis, but makes things easier).

Why are we going to work in discrete time domain? Because we will deal with measurements, and the
measurements will be sampled values. Then we will have to pass from G(k) to G.(t) (e.g. bilinear
transformation).

We will adopt here an hybrid, formally wrong, notation:

Y(z)=G(2) U(z) Notation: y(k) = G(z) u(k)

This notation implicitly implies (so, it is formally wrong because of these assumptions):

o y(k) =y (k)

Notation #1 322 +1

otation eg. —
.« Glx) ==

A(Z) 32_1 +Z_3
Notation #27 e.g. W

—(0.5)z

So, we will prefer the Notation #2:
B(z) = Zbiz_i A(z) =1+ Zaiz_i
i=0 i=1

Is there any condition for which this is related to a real (causal) system? No, a system like this
is always a causal system! If you think about some condition like n > m, that’s because you
where thinking about Notation #1. For having a proper transfer function you don’t have to check
the maximum value of n, but that the maximum degree of z which appears in the polynomial A(z)
is not lower than the one that appears in B(z). But in Notation #2 there is 1 as bigger degree, it
does not rely on the value of n! This is possible because we have assumed ag = 1 !!!. Then, by can
be equal to 0, but the polynomial in the denominator cannot have lower degree that the numerator,
that’s why we prefer Notation #2: it implies a causal system no matter what (— always proper
transfer function, physically realizable).

2Recall: Z-transform for a discrete signal v(k) = V(2) = 332, v(k)z—F

11



3 SISO LDTI description 3.1 Hybrid notation

In the differential equation form we will have another formally wrong element of our hybrid notation.
Let’s consider a unit delay:

y(k) =u(k —1) = Y(2) = 27 'U(2) Notation: y(k) = 2z~ u(k)

So, we will have the following behaviour:

u(k) 71 y(k)=u(k-1)

So, as seen in the figure above, we can think the delay as a z~! transfer function block .

Let’s consider now a FIR filter transfer function:

_ 0542272 —-3273
N 1

G(2)
This is a proper transfer function, thanks to our notation, in fact:

_ 0542272 —-3273 _ 0.52%34+2z—3
o 1 o 23

G(2)

We have three poles in 0, it is the most stable 3-poles system we can meet! Now, considering z~! as the
delay block, we can easily get the ODE from our Notation #2 transfer function:

y(k) = G(2)u(k) = 0.5u(k) + 2[z~2|u(k) — 3[zJu(k) = 0.5u(k) + 2u(k — 2) — 3u(k — 3)
Let’s take a system whose G(z) is not as good as the previous one:

2— 7l 4272
1—271

G(z) =

The idea is to do the same trick of the previous case, in order to write y(k) as a product of 2~™ blocks.
So, we will divide the numerator for the denominator:

2—z 4272 | 1—271

22271 24271
27 4272
271 — 272
222

This division never ends, but we can go as we want:

22—zl 4272 1— 271
2—2z71 2427 422724 .
271 +zf2
27l — 2
2272
2272 9,73
2773

12



3 SISO LDTI description 3.2 Prediction form

The division ends only if simplifications are possible (F.I.LR. case), but we can rewrite G(z) as:

G(z):zi:2+z*1+2z*2+

and we will have:
y(k) = G(2)u(k) = 2+ 271+ 2272 + .)u(k) =

=2u(k) + [z~ u(k) + 2[z?Ju(k) + ... =
=2u(k) +u(k — 1) + 2u(k — 2) +
We can think then in general G(z) as the never ending division of B(z) by A(z):

y(k) = G(K)u(k) = (90 + 127" + 92272 + g327° + .. Ju(k) =

= gou(k) + gru(k — 1) + gou(k — 2) + gzu(k — 3) +

This is what is called the convolution of the input with the input response of the system.

3.2 Prediction form

Consider the following open-loop scheme:

— 0
e

n(k)

y(k) = G(2) u(k) +H(z) n(k)

(control) (noise)

Here, H(z)n(k) includes the unmodelled dynamics but also the effect of disturbances. For example, if
H(z) =1 we will have an output noise (like a measurement noise):

u(k) ¢ (k) =G (k)u(k)-+n(k)

n(k)

The signal n(k) is assumed to have zero mean, unknown variance and to be white:
n(k) ~ Wy (0,2?)

Be careful, N(0,)\?) is a Gaussian probability distribution. Wy (0,)?) is instead white noise, so a
sequence of uncorrelated values. But, having n(k) ~ Wy (0, A\?), we will have:

13



3 SISO LDTI description 3.2 Prediction form

n(k)~WN(0,AL.[ H(z) ]—» Yal(k)

H(2)n(k) = yn(k) = hon(k) + han(k — 1) + hon(k — 2) + hgn(k — 3) + ...

and:

yn(k — 1) = hon(k — 1) + hin(k — 2) + han(k — 3) + ...

We easily notice that y,(k — 1) and y,(k) are correlated: even if the noise is white, the output is
correlated! So, H(z)n(k) won’t be a white sequence, but something that we can call a “coloured
sequence’.

The expected value of n(k) is 0. During simulations, we cannot know H(z), but we can assume H(z) = 1
and use white noise in n(k) and register in average what happens to y(k).

So, the overall scheme for us will be the one previously seen:

4.[ G(r) ]—i y(©)

n(k)

This will lead to:

G(z) and H(z) are causal transfer functions, and:
Alz) =1+ az Y +az 2 +asz 2+ . tapz "
where n is the minimum degree at which z appears. Similarly: 3

B(z) =bg+ b1z 4oz 2 4 bgz 3+ by ™
A(z) is monic, as well as C(z):
Cz)=1+ 1z ezl ez 3 4 4!
Even D(z) is monic as well:

D(z) =1+diz7 +doz? +dgz ™ + ... +dgz7

3In some textbooks we can find the following notation:

G(z) =2" Ez;

,,,,,

14



3 SISO LDTI description 3.2 Prediction form

Why D(z) is monic? B(z) was not demonic because there is no sense in putting by to one, unless we
know the exact value of u(k). Regarding D(z) instead, consider this following case with D(z) (non-monic
version):
do+diz=" + ...+ dgz1
_ Gt ae F et Th g
14+ciz7t 4+ ... +¢z !

So, if dy # 0, we can write 1 + dy having d; = % and so on, so:
0

dy .~ dg
_1+CT(1JZlJr...JrLTOZq~ Cl4diz L dgz

D(z) _ -
doni(k) = T a—— don (k)

C(z)n )= 1+eciz7l+. +¢gz!

But what if dy = 0 ? Let’s assume dy = 0 but d; # 0. We will divide ﬁ(z) by diz %

D(z) L+diz7 b+ dgz™ -
= d k
C(z)n( ) l+ciz7t 4+ ..+ ezt 1z lk)

But d,z'7(k) is a noise (delayed and changed in power) that we will call n(k). We will never use the
values of the white noise, so we have no interest in using the true values (that’s the difference we where
stressing before between B(z) and D(z): for B(z) we are interested in the real values of u(k), for D(z)
we’re not interested in the real values of n(k)).

If we're not interested in the values of n(k), we could nevertheless be interested in estimating its variance
A2 = A2, but it won’t be used in system identification: the only requirement we need is the zero
mean requirement: time shifting and change of power will not change the expected value (remind: the
requirements where zero mean, unknown variance and whiteness).

Now, it is useful to write y(k) in the so-called prediction form. What does “predicting” means? Let’s
assume that the system S is perfectly modelled by:

Assume also that all the measurements y(k < k) are available and also u(k < k) (hence u(k) is available,
y(k) isn’t):

k—2 k—1 k
w(k) || . | ulk—2) | u(k—=1) | u(k)
y(k) || . | y(k=1) | y(k=1) | 7

Here lies the “predictive” nature of the process: form the past history of output and the history and the

current value of the input, we want to predict the current output y(k). So, we want to rewrite y(k) as a
function of u(k), vk < k and y(k),Vk < k. But there is a problem in here, the unknown quantities:

W= Fuk) + )
(we can simulate) (unknown)

So, we have to ask ourselves: are n(k — 1),n(k — 2)... correleated with y(k — 1),y(k — 2)...7 Yes, we saw
it before. But n(k) is not correlated to y(k)! Then, what is the prediction for n(k)? It is clearly:

n(k) ~ Wy (0,\?) (Mean value = 0 !I)

We can then rewrite:
H(z)"'y(k) = H(2)"'G(2)u(k) + n(k)
and then, to isolate y:
y(k) = y(k) + H(z)"'y(k) = H(2) "' G(2)u(k) + n(k)
we have:

y(k) = [1 = H(2)"'y(k) + H(2) 7' G(2)u(k) + n(k)

15



3 SISO LDTI description 3.3 Prediction hypotheses

Using the matrices notation:

o= 1= 5]+ o

This is the system in the prediction form. But it seems we have two transfer functions {1 — 38} and

g(é))ﬁgg But this is quite surprising, because it seems that y(k) is function of y(k) itself! That is not
really true. Let’s consider the predictive part of the output considering the input:
C(2)B(2)
P(k) = k

We can compute y£ only if the block g(é))ﬁgg is a causal transfer function. We know that the part ﬁgi;

is causal, and then both C(z) and D(z) are monic, so the block is causall

Considering also the predictive part of the output considering the output:

C(z)} (k):{1— L+eiz b+ + ezt u(k)

P(k) = |1 —
yy (k) [ D(z) 1+diz7t 4.+ dgz?

We can, again, divide the two polynomials:

C(z) | D(z)
() [ 1+az7t a2,

yb (k) = {1 - ZC)ZH yk) = [1—14+ a1z + a2 ] ylk) = [z + a2 ] y(k)

So then, y¥(k) is not function of y(k) but:

ypy (k) = ary(k — 1) + agy(k — 2)...
~ C(7)
[l D<z>]

y (k) = [z (D(Z)DZZ?(Z)H Yk —1) = {(dl _Cl)zii((;fzz_102)22 + } ok 1)

We can also rewrite:

So:

This is a proper transfer function! So it is ok to write the predictive form like this:

) = [ (P ot - v+ | 5E TS wtw +

3.3 Prediction hypotheses

What is the prediction §(k) of y(k) in this case? The best prediction you can make, even in condition of
perfect knowledge of the system parameters, is to put n(k) = 0 (it is not possible to predict the effect of

¢ disturbances!):
the disturb S — [Z<D(Z)DZZ)C(z))]y(/€_1)+{m} u(k)

Consider the A(z) polynomial: 4

A)=14a1z7 ' + .. +a,z "

4At the exam, don’t make confusion between this A and the A matrix of the state space representation.
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3 SISO LDTI description 3.3 Prediction hypotheses

We can write it as a function of all the parameters 6 = [aq, ..., @y, bo, ..., b, €1, oy €1, 1,y .oy dq]T:

A(z) = A(z]0)
And so on for the others polynomials. So, we can rewrite:

(Hp1)  y(k) = u(k) +

This, again, is not true, is an hypothesis! Maybe the system is not linear, maybe we don’t know the
value of parameters: our hypothesis is that the system obeys to this equation (in our mind the system
ideally is this one). Similarly, we don’t have the true values of the parameters®, but ideal values. So, this
is our second hypothesis:

(Hp.2) 0 = {true values of the parameters}
So, that’s our ideal case:

B(:lo)
A1)

1. 8§ is perfectly described by y(k) =

2. 0 is known

So, our prediction (ideal estimate) is:

So, our two hypothesis will lead to a prediction error that is:
y(k) — 9(k|6) = n(k)

That is the error of our best ideal prediction! There is a good news anyway: our error will have a
zero-mean value (Wx (0, A\?)).

But what if our hypothesis will not hold?

(not Hp.2) 6 = 6 = (estimated parameters)

So, if 0 is not known (but we have still some hypothesis on n,m, !, q) we will have :
A(2|0) =1+ a1zt + . 4 dpz "

In this case then, our Hp.1 still holds, but € is unknown. So, our prediction (real estimate) is:

S(H6) = [ <D<z|é> - q<z|é>>] sk 1)1 | CEOBEO]
D(z16) D(2]6)A(=16)
Note: apart from this theoretic introduction, we will use
A, A(z), A(219), y, y(k)
indifferently for situations in which Hp.1 and Hp.2 hold, while
A(=19), A, A(z), A(=16) g, 9(k), §(k|0)

will be used indifferently for situations in which only Hp.1 holds.

5n,m, 1, q are the meta-parmeters
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3 SISO LDTI description 3.4 Black Box models

3.4 Black Box models

We have (if Hp.1 holds) this input-output representation:

that in predictive form is:

These models are usually black-box models for LTI Discrete-Time systems. We have a lot of situations
that can be represented by this form, and we can make some further assumptions.

Before doing it, we have to note that the predictive form not only gives us clearly the current y value
in function of the previous ones, but also isolates the noise n(k). In fact, a wrong assumption is that,
since n(k) is a white noise with expectation value 0, we don’t consider the noise. But this is wrong!
Because, as we already seen, we can rewrite

as a function of the history of y. So, it is n(k) not correlated, but the previous noise values n(k < k)
are correlated! So, the predictive form isolates the only value that is not correlated n(k).

So, “what we ask” to the predictive form? Two requirements:

e Rel explicit dependence of y(k) from y(k < k)

e Re2 uncorrelated actual noise value n(k) isolation

3.5 Output error model

If we are in a situation like the following one, we are in the most obvious special case, where

n(k)
u(k) B(z) g y(k)
A(z)

This is the system in which the error is added in the output — output error model:

y(k) = u(k) +n(k)

This model is both in input-output representation and in predictive form (it respects Rel and Re2
requirements).

3.6 Equation error models (ARX, ARMAX, ARMA)

Output error models are not the only way to represent a system. For continuous time systems we have
ODEs, for discrete-time systems we have difference equations like this one:
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3 SISO LDTI description 3.6 Equation error models (ARX, ARMAX, ARMA)

If the polynomials are not exact, we can write the error like:

But we are not interested in this because is not physically characterised! It does not have zero means or
any particular property. For us it will be good only if we assume that:

n(k) ~ Wx(0,02) - ARX
e(k) = or
D(z)n(k) =n(k) +din(k — 1)+ ... +dgn(k —q) — ARMAX

where D(z)n(k) is the weighted noise of the last g values of the white noise. Considering the first case,
we have the so-called equation error model (ARX), a model for which C(z) = A(z) and D(z) = 1:

A(2)y(k) = B(2)u(k) + n(k)
(k) ig; (k) + A(lz)n(k) (ARX 1/0)

This is the input-output representation. How to put it in predictive form in order to respect Rel and
Re2? Let’s expand the polynomials:

A(z)y(k) = B(z)u(k) + n(k)

1+ a1zt +asz 2 4+ anz "] y(2) = [bo + b1zt + bz 2 + o+ bz ™ u(k) + n(k)
y(k) + ary(k = 1)... + apy(k — n) = bou(k) + byu(k — 1) + ... + b,u(k — m) + n(k)

And isolating y(k) we will have:

yk) = |—ary(k —1) — ... —any(k —n) | + |bou(k) + byu(k — 1) + ... + bpyu(k —m)| + n(k)

Auto—regressive part Ezxogenous inputs

That’s why is called ARX (Auto Regressive with eXogenous inputs).

We can notice that [—a1y(k—1) — ... — a,y(k —n)] is equal to [1 — A(2)], so we can rewrite the predictive
form found in a more compact way:

ly(k) = [ — A(2)] y(k) + B(2)u(k) + n(k)| (ARX Pred)

We can also find this last form starting from the general predictive form, considering C(z) = A(z) and
D(z)=1:
C(z) C(z)B(z)
= 1 — _—
) = 1= S8 o)+ | G| uth) 40

y(k) = [1— A()] y(k) + [““ﬁ“} u(k) + n(k)

So, we will have the previously found predictive form:
y(k) = [1 — A(2)] y(k) + B(z)u(k) + n(k)

We can also write it in a third way, considering the following column vectors. The first one is the
parameters vector:
T
9 = [al, A2y eeey Qpyy b(), bl7 ceey bm]

The second one is called the regressor:

(k) = [—y(k — 1), —y(k — 2), ..., —y(k — n), u(k), u(k — 1), ..., u(k — m),]"
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3 SISO LDTI description 3.6 Equation error models (ARX, ARMAX, ARMA)

The predictive ARX form can the be rewritten, considering the regressor at time k, in the following way:

y(k) = (k)T -0 +n(k)| (ARX Pred with ¢)

— ARX is linear in 6!

Considering the second case of

(k) = n(k) ~ Wy (0,A?)
D(z)n(k) =n(k) +din(k — 1) + ... + dgn(k — q)

— let’s develop the equations for e(k) = D(z)n(k):

y(k) = [1 - A(2)ly(k) + B(2)u(k) + D(z)n(k)

Auto—regressive Exogenous

yk) = |—ary(k—1) — ... —apy(k —n)| + |bou(k) + bru(k — 1) + ... + byu(k —m) | +

Auto—regressive Exogenous

+ [n(k) +din(k—1)+ ...+ dyn(k — q)

Moving average

This is the ARMAX (AutoRegressive with Moving Average end eXogenous inputs), also called coloured
equation error because the error is not white.

Starting from the general black-box predicting form:

) = [+ (PE5 ) e - 0+ | GERE] ww +

the ARMAX (C = A) in predictive form we will be:

) = [1= 554w + 5T utw) + a)

Output error model, ARX and ARMAX are the three most used models, and we will basically use only
them along the course. Sometimes you can hear about ARMA models (like for weather forecasting), for
cases where there is not a control action (you can’t control the weather).
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4 Least-squares methods

4 Least-squares methods

4.1 Identification of the best model

Let’s consider the general Black Box hypothesis for Discrete LTI systems (Hp.1). So for the model, we
will have the perfect values for A(z), B(z),C(z), D(z) but not the perfect values for the parameters 6.
But we don’t know even the dimensions, so we have to, in some way:

e identify the set of the meta-parameters n,m,[, ¢, the so-called complexity p of the model

R .. 1T
o identify the parameters 8, = |dy,ds, ..., dy, bo, b1, ..., by, | whose dimension depends on the com-
plexity p.

We will start with the identifiication of the parameters ép, as if the meta-parameters where fixed.

4.2 Parameter identification: one-shot solution

For a given fixed complexity p = {n,m,l,q} we will have to identify a certain parameter vector é; SO
that: R
0, = {best (w.r.t. the performance index) value for 8, }

In order to do that we will use the standard choice for performance index, that is the Least Square Cost.
In order to do that we will need a dataset used for the identification process that is called training set,
that is, the results of the experiments made on the real system:

So, when we are in laboratory we make experiments and we register the training set data:

"When I'm in Lab"

_“L.[ S ] i l

[ . o(8)
)] ) ‘

p(ep

V \4

Then, when we are not anymore in the laboratory (when “we’re home”), when the experiments are done,
we have the already registered values y(k):

V(k) “When I'm Home” y(k)

TS >
k l
1 c(B)

$(k|0)
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4 Least-squares methods 4.2 Parameter identification: one-shot solution

The Least-squares Cost will be:

So the identification process will be choose the optimal value 0~ among the possible 6 values that will
minimize this cost index: A .

0" = argmin Jy (0)

6
We already seen that, for ARX model, Hp.1 holds but not Hp.2:
ARX  —  §(k|6) = [1 = A(2)ly(k) + B(2)u(k) = (k)"0 + n(k)
ARX Hpl —  y(k) = (k)T + n(k)
00 — Gklo)=pk)T0

So we can rewrite the cost function:

In(0) = % [e(1|é)e(1|é) +e(20)e(2/0) + ... + e(N|é)e(N\é)}
e(110)
en(9) = 6(2|0) — In(8) = % [e%(é)e]\,(é)}
e(N|6)
So we have: R A )
e(1]0) y(1) — " (1)0 y(1) ©7(1)0
en(@) = | €OV | _ | @2 —¢T@0 | _1u@) | _ | e"(2)0

y(1) 90;(1)
YN = y(2) oy = 90,.(2) —  en(0) =yy — ®L0
y(N) @"(N)

The regressor is:
(k) == [~y(k — 1), —y(k = 2), ..., —y(k — n), u(k),u(k — 1), ..., u(k —m)]"
dim(e(k)) =(n+m+1)x1=px1

So, as well: R
dim(@)=(n+m+1)x1=px1

And we can have all the dimensions (dimension check)®:

y(1) 90;(1) |
2 2

oy — | Y@ L= [P D L en@)=yy —@% 6
7'1' Nx1 Nx1 Nxp PX1

y(N) @ (N)]

Then:
4 1 a7 T4 1 AT
In(0) = N [?JN - ‘I’NG} {yN - ‘I’Ne] Al yNyN —0"®Nyy — YR BLO + 67BN DY 9}
650, the actual definition of ®  is
ey =[p(1) [p(2) |-+ |p(N)] € RPN
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4 Least-squares methods 4.2 Parameter identification: one-shot solution

where we used the property (M N)T = NTMT.
0T® ~Nyn and y%@jj\}é are scalars, hence they are equal, then:

N 1 2 (14 R .
In(0) = ﬁy%yN + N EOT‘I’N‘I’TJ\}Q - yjj\}q)jj\}a

1 .
Ny%yN — Constant value not dependent on 6

As we can see from the following graphic examples, we don’t need the constant part to compute arg ming,
neither the scalar multiplication factor:

2 f(x)

f(x)

| 0.5 f(x)
g |
|

I L _» L T | L 5
! |
x* = arg)rcnin f)= arg)rcnin f®+ta Va x* = arg)r(nin fe)= arg)r(nin a+ffx) Vep>0

. 1. . .
0" = argrlgn [JN(O)] = arg Inein {QGT{)N{)%H —yny®%0

But is it better to have big N or small N? And which p is better to have? Complexity should be
traded off with N. But first, let’s think about N alone, what is it? N is the cardinality of the
dataset, the number of examples stored. The bigger the data, the better is. That is not the same with
complexity: you have to be able to handle it:

N — o Good p — oo Too much w.r.t. computation power
Now, let’s minimize the desired function:
1 A A
f(x) = iaTq)Nq)]Tve —yn®%0
This is a quadratic form! In fact:

1
fl@) = ga" Mz — CTx f:RF SR MeRP? CeRPX!

So how to minimize a quadratic form?

e Assume f(z) € C! (first order derivable)

0 (condition necessary but not sufficient)

o x* € argmin, f(x) = %f(w) =

r=x*

! Be careful! The gradient is a column vector with the same direction of the argument:

%f (x)
oo f (@)
While the partial derivative is a row vector, not a column:
0 |0 0 0 B T
oz () = a1 () ’8Tczf(m) e ’T%f(m) = Vaf(x)
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4 Least-squares methods 4.2 Parameter identification: one-shot solution

e In the quadratic form
1 T T X
f(w):§ac Mz —-C'zx f:RP R M eRP*P

If M is a positive definite matrix, the function has a unique minimum at x*:

M >0 @VméR”s.tw#O%@ﬂ!min at *

pXp

e So, let’s compute the partial derivative:

0 0
%C’Tm = 52 [c1z1 + coma + ... + cpp) = [c1 €2 .. ] = cT

Note: in the following computation keep in mind that 27 M = aT(

defined as a(x) = MTz):

0 7 _9 = (2T =z’
833(:” Mzx) = 833[@(33) w] = (z' M) -1+ M (m>_ic><p pA><4p+PA><4P Pifl

x) is a function (because a is

But it is wrong at a dimensional check, but we can easily fix it with a transposition:

0
—(@"Mz)=x" M +2" MT =2"(M+ MT)
ox Ixp pXp 1xp pxp

So, if we have a symmetrical matrix M = M7 we have:

inMa: =22 M
oz

And in this case (we will deal with symmetrical matrix, so our case), we have finally:

0

—_— [1wTM:c - CT:B:| ="M -C7T
oz |2

So we have computed the partial derivative for every M-symmetric-matrix quadratic form!

e Now, if M is a symmetrical positive defined matrix (M = M7T > 0):

0

—_— [1wTMa: — CTw] ="M -CT=0—=2T"M=C"
ox |2

e In order to finish we just have to demonstrate the existence of M ~!. But we know that:

M>0=3IM!

e So we can conclude:
2T’ M=C" 5> MTz*=C - Mz*=C —

Szt =M"1C

Now we can apply this to our case assuming that ®y®% is positive defined, and this is true if and
only if rank(®y) = p (it is already symmetric):

0 -z oL - M yn®L = C

=10 = [®yDY] ' ®Nyn

This is the so-called one shot solution to the least squares.
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4 Least-squares methods 4.3 Parameter identification: dataset

4.3 Parameter identification: dataset

From a training set {u(k),y(k)|k = 1,..., N} we can define a matrix including all the regressors that we
need in order to compute the one-shot solution:

[ =) () [ | (N =1
: | : | | :
—y(l—n) | —y2-n) | | —y(N —n)
By o= [p) ¢ | leN)= | w) | w@ | | u(N)
wO) [ w(@) | u(NV-1)
T T
lu(l—m) | w@2-m) | .. | wlN-m)]

But of these quantities the only available values are y(1),...,u(1) what we can do?

e We can put the other values of the matrix (the “past values”) as 0
e We can put “1” such that all the regressors are “full”.
— consider the following example with n = 3 and m = 2:

Normally is not a big problem because n,m < N , so that there will not be too much “past values”
w.r.t. all the matrix. If you have N = 1000 data, the first n = 3 columns are not so influential,
they don’t have a big weight and so this will not affect the estimation.

Remember that our notation implies this regressor “with the minuses™

—y(k—1)
—y(k—2)
-
olhy= |
u(k)
u(k —1)
_u(kf m) |

(here he made an excursus about what if we used the regressor defined with the pluses instead of the
minuses and its effects on ARX and on the parameters)

Recall that the hypotheses on ARX model is that @(k|d) = @7 (k|f) is quadratic and linear in 0.

— this LQ hypothesis implies an explicit solution: the one-shot solution (see later for the demon-
stration that LQ for ARX model):

unique solution & ®N®L > 0 < rank(®x) = p=n+m + 1 (full-rank matrix)?

®y is a p X N. You should have at least N > p data, but normally should be N >> p, so & will be
“larger than taller”, so the maximum rank will be p.

Since @5 = [p(1) |p(2) |-+ |p(N)] € RPN, we have to find p linearly independent rows or columns,
but it is difficult since they are the regressors. Let’s consider then the rows:

TMMT is always semi-positively defined (as the square m? > 0 in the scalar case):
MMT & vT(MMT)v >0 = vT(MMT)v = vTM MTv = wTw = [|w]| >0
Moreover ||w|| =0 < w = MTv = 0, so that:
w=MTv=0cvcKer(MT) Ker(MT) = 0 & rank(M) is maz

So, @NQ% > 0 (positive defined) if in our case we ask rank(®y) =p
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4 Least-squares methods 4.3 Parameter identification: dataset

[ —y(0) —y(1) —y(N—=1) ]
—y(l—n) —y(2-n) —y(N —n)
®,
by = - —
u(1) u(2) u(N) P,
u(0) u(1) e u(N-—=1)
| u(l - m) w2 - m) u(N _ m)

A trivial case would be the case of null input: in this case u(1 —m) ... u(N) =0 — ®, = 0, and that is
obvious for a linear system with null initial condition. Take a coin and a smartphone on a desk: the only
way to distinguish then from their input-output behaviour is not to leave them still (null input), but to
apply a certain force — applying an input is important!

We can recall that for first order systems we used to make the “step response” analysis in order to fully
determine parameters. In this case though, if we have a constant input as a step signal:

e u(k) =0 — No good (null input)
o u(k) = AVk — the matrix ® is filled with constant values equal to A — rank(®y) = 1. In this
case, if n # 0 or m # 0, we would just have:

y(k) = bou(k) + n(k)

So, in the case of no dynamics (pure amplificational system) with a constant input we can detect
only one parameter by
o {u(k)} ={-1,1,-1,1,...} = we will have:
01 01
oy=|(1 010

We will have then rank(®y) = 1.

| So, the bigger is the matrix, the more irregular has to be the input. And what is the most irregular
input that we know? The white noise

e u(k) = WN — persistently exciting input.

But how it is possible that for a 1st order system like a RC circuit we just need a constant step input
in order to identify two parameters {7, k}? Recall that we need the transient to identify 7, not only the
regime (that we use to identify K).

We make a strong use of the regime, if we arrive at regime we have a constant input, so the output will
be basically white noise around K — it will be impossible to identify 7. But when we use ® we want
a big matrix, so N will be big, and the transient will be only in the first samples, so it will have a very
low weight on the “averaging process” that is this kind of identification.

In this case, the best thing to do is to “keep shaking the system” with a white noise:

The first phase will be open loop random control with white noise in order to identify
the parameters. Then there will be the closed loop control with a certain designed
input.

Inputs, so a sequence {u(k)} can allow you to identify (for N — oo):

u(k) = 0 = 0 parameters PE(0)
u(k) = 1 = 1 parameters PE(0)

u(k) = WN = oo parameters | PE(c0)
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4 Least-squares methods 4.4 Parameter identification for black box models

PE(k) is “Persistently Exciting input of order k7, that will allow you to identify k parameters. Given the
following definitions, we can then state the corresponding theorem:

e Probabilistic autocorrelation function: Ry, (7) = Exp{u(k)u(k — 1)}

e Empirical autocorrelation function: Ry, () = + > pe; u(k)u(k — 1)

e Power Spectrum Syy = 5= > or o Ryu(T)e ™37

Theorem: Order of persistence of excitation (number of parameters that can be
identified when N — 00) corresponds to the values of frequency for which the Power
Spectrum Sy, (/%) # 0

In fact, if we recall Fourier analysis of spectrum signals, how many § in S, we have for each signal?

null = 0
constant — 1
sin — 2

cos — 2

WN =00 Sy = A2

4.4 Parameter identification for black box models

Summing up what we saw before, given a training set

T.5.={ulk),yk) | ke[l,..,N]}
we have

0" = [('I>N'I>JTV)‘1<I>NyN] explicit one-shot solution < L@ hypothesis
L — model linear in 6
@ — cost is a quadratic form in the model

j(k|6) = y(k—1) +

u(k)

Consider the general Black Box case:
C(216)B(210)
(210)A(=|6

. <D<z|é> - {J<z|é>>
D(/6) )

Let’s see if our black box models (OutputError, ARX and ARMAX) respect the LQ hypothesis.

ARX Is the estimation §(k|6) linear w.r.t. 67

D) =4 C2) - A  — s deorinahony
. . desapieo’
No  derominak o=

GwI8)- [4- () y09) +B(2) pmiw)

L ) L L}

Uneoe combineolon oF LoUn. comb.
Ane numloea o the oF U iopu
arpr ylk-1) - ylk-n) MO - e

| |
Wnece ctomhinohvon of  haa

eagre R P(K)
J R
ot we @ say §(x9)- E}T\_P(k)

bt 2o Uneoubhy  w.rk. @
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4 Least-squares methods 4.4 Parameter identification for black box models

Hence, we can use one-shot solution for ARX models.

Output Error Is the estimation §(k|@) linear w.r.t.  for OE models?

0€: J = 2(2) uw) + v
abpr G(2)
CREOR,

T We QFE. lnwer in @?

S(d |- 8 Lk,
§R98) - Ty Y

M e morert e 5 oo dorowipnetoe
~y din Sov behweer  polinoml AN aot Wnce
ke kot [poOMErees (3 - ) sf dnominake
Ay ok Uneoe in E}?‘

At
Assume @(})=@—(2J = Gotg¥ gt 'nﬁymk
A 2 SZL
(2]
-t
=l 2 2 ke ten
=0 9L d;r\?\'s\\w s

Qle)- %, 9&)-g . 9(&):9€

Impu (te pes P ‘e

— Gz) —
M~ f(9) gte)
90/ 9, % - (o0 YY)

g €)- CR) uk -
Tgergag +t - D -
< ao}dlé) + q )uflz-') T =
90, 9.9 Il u0e, gt -]
iH's 0gain & Wnecr wmbinaRov in He
equi veuert  povom eter vecbor [ 9o, g - J
hot s InF\‘neHj ng. ~~ nek  useml
e o't howe kneouty wre @

Hence, there is not an explicit one-shot solution for OE models.

ARMAX For the ARMAX is even easier because it is impossible to reduce it to the needed form:
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4 Least-squares methods 4.4 Parameter identification for black box models

[ mposs»b\x o ukile
g El- Py ©
dopnds o) o0 mthers A~ No  or
Q{J?/\ pove ghot sof
T s wre C=p_ D#A
Gui9) - [4- BT g + 83 L
‘ brz Dit)

tobos  doagmi nobor A dimding by
povomeress A~y pokb UneoR i @

Conclusions Do we prefer ARX or the output-error model? It depends: in terms of description
output-error model is better, in terms of identification of the parameters, the ARX is better because of
the one-shot solution (— very fast and ready-to-use identification procedure, with some warnings like
being aware that we have to inverse a matrix, that is not a easy and simple task).
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5 Mathematical programming methods

5 Mathematical programming methods

As we saw in the previous section, having 8* = argming J (é) with ARX (Linearity hp.) with Least
squared cost (Quadratic Hp.) leads to one-shot solution. But what if the LQ hypothesis does not holds?

Suppose we have a function like:
flx):RP - R

What are looking for is:

¥ = argmin f(x)
T

What if we have multiple minima, like some local minima and an absolute minimum f(x)? How we can
avoid of “falling into the local minimum”?

5.1 First order information exploitation: gradient descent

Consider the initial, tentative solution &(!). For [ = 0,1,2, ... we have:

2D = 20 — oV, f(z)|

z=a®)

with « that is the slope of the gradient algorithm. A stop condition is missing:
if stopping condition hold true — STOP

We need two things to decide:
o Initialization
— a “reasonable” value
e Stopping condition:

— Max number of iterations or Max computational time

- fa) — f(0) < ¢
— W — 2D < ¢;

aVa f(x)]|,_p < €a

These and the other kind of methods like this one are called mathematical programming algorithms,
they are different among the others because of the maths they are using, they imply an Hp. on f(«) and
their depends on the quantities that are available:

Type 0 Random movement f(x) (see Machine Learning
Type 1 Gradient algorithms 0/0x  f(x) course "Optimization" part
Type 2 ? 0?/022  f(x) on Type 0, 1, 1.5 and 2)

5.2 Second order information exploitation: Newton-Raphson algorithm

How to exploit second order information? Assume f(z) € C2. At = &, so, a local approximation of the
function would be this quadratic approximation f,(x) as we can see from the Taylor expansion and the
following plotted example:

f@)~ @)+ 5 i@ (@@t i-a) @) (@)

=T T=T
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5 Mathematical programming methods 5.2 Newton-Raphson algorithm

X1 Locally: f, =~ /(x)

But what if the actual 3D function would be exactly the quadratic function that we called “local approx-
imation”” We would have an explicit exact solution (the one-shot solution again!):

f(@) :f(aE)+CT(x—:i)—|—%(sc—sf:)TM(m—:E) if M>0= & = argmin f(2) = M~'C.

If we’re not in this case, we will minimize fz(x — &) (problems here and later with the inversion, what is
this and why does it have the inversion ~17):

At 20 we will have:

2
2D — () _ [5 f(=)

r [c?f(w) r
0x? J—_ oz =z

This, in optimization, is the Newton’s method generalized for higher dimensions

8

Here in figure we see a comparison of gradient descent (green) and Newton’s method (red) for minimizing a
function (with small step sizes). Newton’s method uses curvature information (i.e. the second derivative)
to take a more direct route:

But this is not complete. In fact here, we're assuming H (&) > 0, but this is not always true, and without
it we can’t have a one-shot solution. What we have seen is that in this context is that when we have a

function f(x), we have:
e =¥ — [H()) 7 VI(@)|,0

8In one dimension, Newton’s method performs the iteration

I (zx)
I (=)

Tp1 =T+ =T —
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5 Mathematical programming methods 5.3 Parameter identification

The hypothesis H (a:(l)) > 0 means that the local approximation function is a convex function.
But what if this does not hold?

if H(z®) >0 then () = 2O — [H (27! V, f(x)] 0
else 2+ = 2 — o® Vo f(@)| 0

So, instead of using the Hessian matrix, when this is not invertible we use an identity matrix. More in
general, I can modify, perturb the Hessian matrix in some way M' such that [H(:c(l)) + Ml] > 0:

240 =20 — o [H(@®) + M'] Vaf(@)]y0
For example, the descent algorithm we saw can be seen a specific case of this algorithm, using:
MO =71 — H(zW)

To avoid the H(Z) < 0 issue, we can use:

)\ I-H(zW) else

Another possibility can be:

MO =50 sOeRr st. H(xzW) 460 >0 — (it always exists!)

H(z®)+50 >0

Notice that ,in the last case:

1
for § — oo W[H + M] is the identity matrix

Note also that, if H(z®) > 0 then:

ve  [H@W)+6W] >0

We can demonstrate it in the following way:
H>0 z'Hx>0 M>0 z'Mxz>0 z#0
' [H + M)z > 0
Hence the algorithm, at step I:

e Compute H(z®)

e Choose a tentative value for §()
if H(z®)+5WI >0 ok
else increase

This method does not save us from local minima — simulated annealing and other stochastic minimization
algorithms are used to avoid it (but in these cases yes, you'll find the general minima with probability 1,
but it can takes infinite time: you don’t have guaranteed that you'll reach it in a finite time).

5.3 Parameter identification

Given the already-seen Least-squares Cost J N(ép), we want to find the values ép such that:
Iy f 0«—=x 0* «— x*

0 = arg mgin Jn ()
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5 Mathematical programming methods 5.3 Parameter identification

Hence, with a given training set:
{u(k),y(k)|k=1,..,N}

we have:

1L, 1 Y 1Y
:Nze(’“ Z — §(k|6))? NZekw

k=0 k:o k=0

So, applying the general mathematical programming algorithm we just introduced:
. -1 .
60+D _ 60 _ o lw N Ml] laJNf”) ]
6—60) 90 |5 0

06°
The conditions that we use to make consistency checks are the dimensions of the matrices/vectors:

N ~
8JN Z k:\@ \9)
95 (8) i3 4 row vector (1 xp):
26
0Jn(6) 0Jn(6) 9y (0)
a6, 96, T 94,
e(k|f) is a scalar and %’29) isa (1 xp).
So we have:
0J%(6) 0 0 . . QN{ R
— = ——Jy(0) = — e(k|0)——e(k|0) + —e(k|0)—e(k|O
207 6“96“91\/()]\szzo(l)a@?:(l)a{g(\)é)(l)
Another dimensional check:
200 2 2 A
aJNA(e) is a (p X p) matrix as well as w , while e(k|0) is still a scalar
00? 00?
ae(kJH) isa (1 xp), so 86((9]20) 86((9]20) is not consistent! We have to transpose it

If we transpose the second one we have a (1 X p) - (p x 1) = (1 x 1), and it is still not correct (careful!
MATLAB will not detect this error!). If we transpose the first one we have a (p x 1) - (1 x p) = (p x p),
and now is correct:

8.72.(6) gi (1) 92e(k|6) . de(k|9) " 9e(k|9)
062 N 002 06 06

So, what we need? R K
Oe(k|0) 0%e(k|0)

e(k|0) i - Vk € [1,N]
00 062
In the identification process, e(k|é) is easy to compute, and % is quite easy to compute as well.
The problem arises with %:2'9) that is not so easy to do. Can we not compute it? If we need another

0J3 (6)

reason to not do it, we can notice that o3 is the Hessian matrix. Then, if we consider only the second

term of the sum

0J%(0) 2 < de(k|O) 8e(k|0)
N _NZ



5 Mathematical programming methods 5.4 Parameter identification for ARMAX

T
and we define a vector v = 22%8) " that has dim(v) = (p x 1), we will have a matrix in the form
Oc(k|6) De(k]8) "
il il =wv-vl >0 (is always semi-positive defined!)
00 00
Then: -
N ~ ~
- - - 2 Oe(k|0) Oe(k|O
VO #0 [ev(k)} [v(k)To] >0 = e(agJ ) eéé' ) >0

k=0

We can rewrite then the general mathematical programming algorithm as follows:

—1 ~
+ Ml] [ 0Jx(6) ] —
6=61 6=6)

00

AU _ o) _ 4 52J1y(9)
002

N T A N
— ) = g — o) li, 3 o) 0clMB)| g ll S e(k]g) 22E10) ]
im0 o_en 99 |s_sw =0 90 |4s_s0)
V6(Dis positive defined (>0)
In this case then we perturbed our Hessian matrix in the following way:
N ~
N N 2 s 0%e(k|0)
HO)D + MY =[m(O)Y - = k|6)———— ST
(6)" + (6) N};}d 0) 502 é:é<l)+

But we don’t have to compute it! The second order partial derivative is in the perturbation
because we don’t want to compute it!

So, we have to:

e Choose a tentative value for 8(0)
e [ =(0,1,2,.. = x) stop
if max iterations reached [ = L
or [| 80+ — W) || < g
or | Jn(6UFD) — Jn(0D) | < ey
e Choose a®)
a) =1  (you don’t use it at all)
a®) = const. < 1 you are more cautious as lower is the value — a small is too slow

a® = const. > 1 you are more fast as higher is the value — « big leads to too many jumps

another possibility is to use two scalars in order to have a dynamic behaviour, reducing time
by time the effect:
o) = 4
co +1
be careful about the tuning of the two constants c1, ¢, they don’t have to be too high w.r.t. the [
values, if not it would behave just as a constant value.

5.4 Parameter identification for ARMAX

Let’s recall now the ARMAX model (general case when C(z) = A(z)) in input/output form:

and in predictive form:




5 Mathematical programming methods 5.4 Parameter identification for ARMAX

P Az B(z

a410) = [1- 2y | + 2y
D(z) D(z)

it allows us to predict a value of y(k) relying on y(k < k) and u(k < k).

As we saw, what we need for the [-th iteration:

R 0
e(k|0V) e R with k € [1, K], 8@(1;0?) e R¥X)  with k € [1, k]
A ~ A~ ~ A T A
60 = [ a0 5, 5O dl(”,...,dn(”} dim(@D) = p= n+ (1 4+ m) + ¢

A A De(k|0"
From a 8(®) available we compute the steps e(k|8(°)) and eég(l))

and so on.

6=0(0)

e(KBD) = y(k) — G(k10V) = gi;yas) - f;i;u(k)

We are hence in this situation:

Beware: This isnot A !Is A(z|6")
i

y(k) A/
D
2 A (1
2 + e(k|@ (,\) )
g {r
B Same goes for e
u(k) A and for the other
B 3 polynomials

As we can see from the figure, we need a dataset in order to have y(k) and u(k) values. We can move D
“outside™

We have then:

de(k|OW) lae(mé(l)) de(k|OW) de(k|OW)

500 S od, an

We have then to compute:

e(k|0V) ., de(kOD) De(k|OD)

35



5 Mathematical programming methods 5.4 Parameter identification for ARMAX

How much B changes if i change a; V72 (In the following, we will imply the () notation where not explicit)
It does not, so the partial derivative w.r.t. a; is 0. A changes instead, so:

A@)y(k[0D) = [1+ drz™" + o + dnz ] y(k) = y(k) + diy(k — 1) + ... + dny(k —n)

[AG0D)y(8)] = y(k =) = =7 y(k)

0
od;
The y(k) term is written in our dataset, it is not a prediction! So, we don’t have to pass to the time
domain, we can directly write (and then = for the other matrices):

82}- [A(zlé(l))} =z = ( 36;;2* [B(zm(l))} _ i - [ﬁ(z|é(l))] _ z‘i>

How much D changes if i change @;7 It does not, so only A changes are interested by the derivative:

‘%WMWMWPQMWMwﬂ

i

% [b(z|é<l>) e(k|é<l>)} -

A A 0
() O] _
D(z100) 5-e(k18) = =y(k) 0
So:
i o_ew D(z]6W)

We can then notice that we can have the following block representation:

i T

e(k|9
Let’s compute now the ob; part:
E%WMWMWW=6MMWmemw%WWﬂ

ﬁ(z|é(l))%e(k|é(l)) =0+ 2z u(k)

_Z_Z‘ Be
=———u(k), 1=0,1,...,m|«+ aware
=6 D(z|6™) of 0!

So:

de(k|0)
ob;

Let’s compute now the ad; part:

0 O 1. 4

5, [DEOY) ekp®)] = - [A(:16)y(kO") - B0 yu(hio®)]
L 0
AMWJ@WMMWM%UWM 0

So:




5 Mathematical programming methods 5.5 Parameter Identification for Output Error

5.5 Parameter Identification for Output Error

... do it as a homework ...
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6 Model Validation

6 Model Validation

In the previous sections we saw the offline parameter identification, that is, given a fixed complexity and
a fixed dataset — identification of 8. Now, let’s see how to identify the metaparameters, that is, the
complexity of the system, and validate it.

6.1 Complexity identification of n,m for ARX

Talking about the ARX, n,m are the complexity metaparameters: when you choose them, you “freeze”
the complexity of the model. In fact, we use the following notation:

ARXmm (e.g. ARX473 —p= d1m(0) =n+m+1= 8)

Notice that ARX,4 3 and ARX3 4 shares the same p but they have very different dynamics. Sometimes we
refer to p as the “complexity”, but this is not completely correct: the n,m numbers are the complexity:
the real complexity is the vector of metaparameters, not just p.

ARXgp p=1
ARXOJ p= 2
ARX1
ARX;, p=3
ARXo 2
ARX> 1

It is better to have a fixed increment method in order to not consider all the possible values. That is
why sometimes it is better to refer to p to reduce the cases, and use this conventional limitation:

p = 1 ARX(LO

P = 2 ARXLO (71 T)
p = 3 ARXLl (m T)
p= 4 ARXQJ (n T)
p = 5 ARX272 (m T)
p= 6 ARX&Q (n T)

That is why in the future we will refer as p as the “complexity” of the model. Now, how to choose p?

o how we cthoope It

aiusowopHNoi o lve o“P?

i ] 3(‘9= F(’%)-}- N
A l ' ! N F - 7 @@\R&Siou/fnk/cpomh‘m problom
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6 Model Validation 6.1 Complexity identification of n,m for ARX
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6 Model Validation 6.1 Complexity identification of n,m for ARX
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6 Model Validation 6.2 Other ways to chose complexity/validate the model
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6.2 Other ways to chose complexity/validate the model

We made two hypothesis:

e (Hp.1) S =M(0)

e (Hp2)6 =0
We have some additional validation methods for the model:
Whiteness test or Anderson test (error sequence is white with a certain confidence «)
Statistical corrections of Jy

Akaike Information Criterion (AIC)
Minimum Description Length (MDL)
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6 Model Validation 6.3 Whiteness/Anderson test (validation between 2 models)

6.3 Whiteness/Anderson test (validation between 2 models)
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6 Model Validation 6.3 Whiteness/Anderson test (validation between 2 models)
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In order to perform whiteness test we need the set-correlation:
Ree(T) = Exple(k)e(k + 1)} = (e(k)e(k + 1))

This is a probabilistic definition. We don’t have R.. available, because we does not have the probability
density function (so then we can’t integrate it). But we can say, considering white noise approximation:

Ree(r) = (e(Rel -+ ) L0 {32 o

It’s good to recall that we have only N samples, so our R will be an approximated one:

) 1 N ) . 1 N—1
Ree(r) = = ) BRI N e(k)e(k +7)
k=1 k=1

Ree(7) is the self-correlation of e(k), Ree(7) is the empirical self-correlation: (e(k)e(k + 7)) is an expec-
tation (we don’t need the time, we can “freeze” it), while R..(7) computation is an ergodic process, it
proceed in time while computing the value.

Two facts can be proven:

N . i A2
R () "5 Re(r) RX(r) "N (0’ N>
Considering Réve, we can express a normalized self-correlation:
RN (1) N big < 1 )
T)=—— 7) ~ N[0, =
x(7) AN (0) x(7) N

Equivalently:

VNx(7) ~ N (0,1)

and N (0,1) is the normal Gaussian distribution!

— the whiteness/Anderson test is testing if v Nx(7) has a normal standard distribution:

— |V Nx(r) ~ N (0,1)

For the test we choose the oo = confidence € (0,1) (the smaller it is, the more sure we are). The usual
value is 0.05.

After that, the value 8 has to be obtained, how? Consider a normalized Gaussian distribution N (0, 1):
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6 Model Validation 6.3 Whiteness/Anderson test (validation between 2 models)

AN,

N

\

— the B values have to cut tails for «/2 probability (the outside areas cut by 8 are «/2) and we will
consider the values inside the interval (we cancel every bias, hence is a test on variance, checking
that it is actually a variance of that kind).

Then, we have to compute x(7), with 7 € (1, N;) C N considering a correlation window of N, < N
samples. Beware, we need N — N, > 1 in order to have statistically meaningful empirical averages,
because the window has to be small w.r.t. the full dataset:

1) e Skl )

o -
X 1 — AEE _
f I elk)elh)

(0)

RN(N.) N _N, &k=1

RN(0) 1 v

X(N;) =

e(0) e(l) e(2) ... e(N;) | e(N+1) ... e(N)

“small” N,<<N “big” N>>N,

N, is “how much in the past you see for each sample when you compute the correlation between two
samples”. N, is the number of times v Nx(7) is outside the interval (-8, §):

o Nout I can say “e(k) is a WN”
— <a= 0K [ Y
if N, @ with confidence o

Hypothesis evaluation How can we use a and S to evaluate how good are our hypotheses?

o (Hp.1) S = M(8)

o (Hp.2) ) =6

Let’s start from (Hp.2). Consider two models M(0’) and M(0”). Which of the two is better? If
we observe the following results (be careful!!! The test is just a OK/notOK! It does not give us a
quantitative index in order to evaluate the model):

| M(6") | M(8”) | Outcome
a=0.1 OK OK Both OK — reduce the confidence
a =0.05 OK OK Both OK — «' |
a =0.01 | notOK | notOK | Both notOK — « 1
a =0.02 | notOK OK M(0") is better
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6 Model Validation 6.4 Statistical corrections of Jy (FPE)

So, changing « allows us to choose between the models — « is useful not only to validate them, but to
compare them as well.

6.4 Statistical corrections of Jy (FPE)

For this method we can use all the database, so we can avoid the arbitrary fold-sectioning in training
set an test set’. Especially if we have the feeling that N is “too small” to be divided in training-
test sets that are “large enough”, we should use this technique — we use that all the IV samples for the
training (though N by itself should be “big enough” at least to train the model).

While choosing the complexity p of the system we are then in front of a trade-off that can be clearly
exemplified by the following qualitative graph (w.r.t. the graph, we want to “stay in the middle” to avoid
overfitting):

underfitting

ANCH

overfitting

Since we don’t have any validation set, we need a different index to evaluate our model. This index is the
Final Prediction Error, and regarding the complexity of the model, we can anticipate that is defined

as follows: N4+
pJN( 0,)

FPE(p) =

Now, let’s find this expression. Let’s say we’re in the case in which N is “big enough” to train the model
but “not big enough” to be splitted in train and test it. We want then to predict the final expected value
of Jy (the Least-squared Cost):

J E{J
N NSl {In}

E{JN}:E{ Ze (k|6 }<Hp1sz> { Zn }(N%O)V

In general, we don’t consider Hp.2 as an actual rule so, given the cardinality N of the dataset and the
complexity p of the system we have to add:

B0 =4 (14 ) - (57)

To have an unbalanced variance it has to converge to 0 with N — oo.

From statistics we know that the empirical approximation of A? is
| XN
2 2(1.10%
N > e (kl67p)
k=1

But this is a biased statistical value, if we want an unbiased (average mean = 0) estimate of A2 we need
to add a —p to the denominator:

2 1 al 2 Ve
M e > e (k|6%))
pk:l

So, we have:

N
Bap{n(6°)} ~ —— P S~ 2(11f,) = N“D(NZ k|0> N*zJN(é;;)
k

9Normally they both have to be “large enough”, and this is very difficult to determine, standard thumb rule are
train : test = 70% : 30%, but this is not an actual criterion
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6 Model Validation 6.4 Statistical corrections of Jy (FPE)

which is the result already anticipated. So, we will have

. (N+p A
* 0*
p" = argmin (N pJN( p))

N +
— we basically added a multiplicative part N7p7 used when N is not so big. If we analyze it:
-Pp

N-‘rl
_N+p. s _ D
FPE(p) = _pJN(GP) gn(p) = A -1
—— ——1
gn (p) p

gn (p) is the statistical correction of the cost

We can notice that, following this graph:

WP

we should take p < N, and also p > 0. So the actual graph will be:

k=)
*

= T y

Then, we have FPFE(p) and we should take the value p* of p that minimize it.
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6 Model Validation 6.5 Other methods

6.5 Other methods

We have several other methods, for example:

e Akaike Information Criterion (AIC)

AIC(p) = 2% % +In(Ix(6;))

e Minimum Description Length

In(N)
N

MDL(p) = p+In(Jy(6))

Statistically, all the methods seen and the others converge to the same results for N — oo.
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7 Recursive Online Identification

7 Recursive Online Identification

Now, we want to identify the parameters, but while collecting the data (before we saw only offline
methods for identification, that relied on already-collected data). Given a current estimated model and
a new observation, how should we update this model in order to take this new piece of information into
account? Hence, we need to perform:

1. Data collection £ =0,.., N

2. Parameter identification & model validation

In many cases it is beneficial to have a model of the system available online while the system is in
operation. The model should then be based on the observations up till the current time. A naive way
to go ahead is to use all observations up to k to compute an estimate (k) of the system parameters. In
recursive identification methods, the parameter estimates are computed recursively over time: suppose we
have an estimate é(k —1) at iteration ¢t — 1, then recursive identification aims to compute a new estimate
6(k) by a “simple modification” of @(k —1) when a new observation becomes available at iteration k. The
counterpart to online methods are the so-called offline or batch methods in which all the observations are
used simultaneously to estimate the model.

What does it means having a time varying system? Normally, we don’t have 6 but (k) (temporal
dependencies). What if, also, we have the necessity of an estimation of 6 or (k) while collecting the
data?

k1 k
| I / . L 1 1 |
0‘ y(1) ¥(2) y(k-1)y (k)

u(l) u(2) u(k-1)u(k)

1 N

(. \’_JL — J
identification Control basing on the model

o Moy

As shown in figure, we need a certain time in order to collect and identify the parameters. But imagine
you driving a car: you need to drive it almost instantly (— control task), but you also have to understand
how and how to make it (— identification): in the beginning you have a very uncertain model for “driving
the car”, so, you will probably need a robust control, in order to control the car even with big uncertainties
(like when you learn to drive a car). Robust control is like moving object with strong constraining forces
and no compliance — not gives a lot of information about the system. While if I want to identify the
system, I have to solicitate it in order to see how it behaves = conflicting goals: control & identification.

So, for example, we can identify for very few seconds, then control, then identify again and so on... as
we can see in the following figure:
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7 Recursive Online Identification 7.1 Recursive Least-squares with ARX

white noise identification
for —
identification
Control
white noise identification
Control

But this is not always valuable, it depends on the application: for a pick-and-place application with a
serial manipulator, to “shake” a little the manipulator (adding some white noise to the input) in order to
identify the parameters we have to move it back to the safe position. How much we “shake” the system
is given by some parameter like this a:

u(k) = auc(k) + (1 — a)ug(k)

control identif.(probing)

The control then should not be robust, but should comply to the uncertainty. The so-called adaptive
control allows this. One possibile scheme for adapting control is the “indirect’” adapting control one:

uprobing white noise

et O ISZM(é)I

" Identification

Ll block T O

Another one is the “direct” adaptive control:

(Arrow = it varies)

o
Controt block M 2
e TRy

7.1 Recursive Least-squares with ARX

At instant N we will have
. . . 1 & .
0" = argmin Jy(0) = argmin Jx () = — > _[y(i) — 3(i0)]?
0 g N 1=1

(important to use 4 instead of k, because we will use k& later)

6* after N steps: 6*(N) is the estimation of @(N) based on u(i)y(i),i € [1, N]
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7 Recursive Online Identification 7.1 Recursive Least-squares with ARX

At instant & we will have:

6* = argmin J;(0) = argmin J;,(9) =
6 6

k
> ly(i) —5(ilo)°
i=1

el

Assume we have an ARX model (§(k|@) = @7 (k)6) we will have:

0" = (@,0]) Dy with B = [p(D]fe(k)]  and = [y(1)].|y(k)]”

Sample time
8k)

The computation time depends also on the value of k. But we have a problem here: @, is a p X k vector
while yi is k X k — the dimension increases with time — at one point it will be unbearable to
compute. Hence, at one point, i can stop memorizing old samples or i can reduce the complexity:

To consider time-varying parameters I put then some forgetting factor p € (0,1] (1 =1 is “no forget-
ting”):

.. redo all the computations but with p this time ...
We did it considered (k= N, p = 1):

In(0) = ek (@)en(0) = (un — 2x0) (uy — Bx0)

.. and all the other computations ...

If you want to do it for p # 0 you’ll have:

. 1 . .
In(0) = NBQ(O)WNGN(e)
You will work with a Wy that is a N x N matrix with columns like:

‘ulel

Wy = M

With this, the normal equation will be :

Vo n(0)lg0 <= OnWnOLO" = OyWhyn

N

6 (V) = argmin{ Iy (0)} = 1+ 3" p " [y(0) — 9(116)] = (@ WN D) Bx Wnp
=0
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7 Recursive Online Identification 7.1 Recursive Least-squares with ARX

6" (k) = (O W ®L) 1@, Wiy

s
P
Wy = ph?
(k=0
This equation has some interesting properties:
e In general we have:

T
b3 T
[a1]...|an] => ab]

by,

with a; that is a n x 1, b that is a 1 x m and a;b] that is a n x m.

e We define

V%)
ol
i
KA
>~
=
K
Eale|
I
€
=
5
=
=
ol
&
I

That we can rewrite as:

k—1 k-1
Se = @(k)" (k) + 3 u (D) (i)" = (k)" (k) +p 3 u* =V i) ()" =

1 1
Sp—1=—8k — ;@(k)w(/f)T
o We define also
k—1
" 0
Mk_Q y(l)
Qr = PpWiyr = [p(1)|...[p (k)] [T S =
k
0 0 y(k)
P ly(1)
= Qx = [p(1)]...|p(k)] :
10y (k)
That we can rewrite as:
k
Q=Y pli)uFy(i)" = @(k)y(k) + pQk—1
i=1
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7 Recursive Online Identification 7.2 Recursive LS Algorithm

e The normal equation for k — 1 is:

S0 = Qy
So:

0" =S, =S, p(k)y(k) + pQp1] =
=S, p(k)y(k) + u(isk — igo(lc)goT(k:))é*(k —1)]

07 (k) = 0" (k — 1) + 8. (k) [y(k) — " (k)O(k — 1)]

Prep. Gain Innovation

0" (k) = 0" (k — 1) +~v(k)[y(k) — 5(k|O(k — 1))]

this means that we can take the last value that we have, the output of the value instant k, and
compare it with what we can predict with the information up to instant & — 1.

7.2 Recursive LS Algorithm
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7.3 Algorithm initialization

How to cfarb @ (TaHalisako)
So=?
#0)-7

Revotu

2
Sus 2. Lri) xp’(cJ/ﬁ"- T oW BT ST

v

T T
s o symmereik  molx
@ oo d inibels sahow - X‘&'s @ gymmebix pokeiy
no eeafov
So= T pp (oahly awolaix)

52



7 Recursive Online Identification 7.3 Algorithm initialization
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7 Recursive Online Identification 7.4 Algorithm matrix inversion

7.4 Algorithm matrix inversion
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7.5 One-step prediction form

7 Recursive Online Identification

7.5 Omne-step prediction form
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8 Identification for non-linear systems

8 Identification for non-linear systems

We can extend our treatise on non-linear system starting with an hypothesis, that is, our nonlinear system
has a structure similar to ARX (Nonlinear ARX):

Hp.NARX y(k) =" (k)0 +n(k)  becomes  y(k) = ~[p(k)] +n(k)
with n(k) ~ WN(0,A?) and ¢ =[y(k—1),...,y(k —n),u(k),...,u(k —m)]T"

u(k) — —» y(k)

T ()

unknown function
n(k)

Augmenting n, m increases the representation capability.

For our case: (k) is a-priori decided, we are not using p for its dimension (there is a fixed p,), we're
gonna use p for the dimension of a parameter vector.

We don’t know what is the shape of the unknown function (). The problem, qualitatively speaking,
consists in finding the best v* to model the system. Modeling the system in this case means having a
model able to predict the behavior of the system. This is a predictive description:

y(k) = [p (k)] + n(k)

We will have:
9(k|v*) =" (p(k))

If we know (-) = §(k|y) = vlp (k)] + ntk]
Notice that in y(k) = T (k)@ + n(k) the term ¢ (k)6 can be rewritten as
eT(k)0 = —ary(k — 1) — ... — apy(k — n) — bou(k) — ... — byu(k — n)
This is a linear difference equation, so
7 (e(k))

is a non-linear difference equation, and what we are doing can be seen as trying to solve it in an
indirect way, using v* instead of actually solving it.

The unknown ~ is a function , we need to map any possible argument with the output! Is an oo-
dimensional problem, because the function is an infinite (dense) input-output mapping. But, from another
side, it is easy if we think that the function is a scalar — is (formally) easily extended to the MIMO case:

p(k) = [y(k =17, ..., y(k =), uk)”, ulk —m)T]"

Approximation — we have methods for solving (in some way at some quality) parametrical problems:

J(6) = arg min 6
6

— we saw the one-shot solution or the mathematical programming methods.

Cost functions Which cost function we will use here? We hypothesized that is N-ARX and now we
compute the approximation:
Hp.NARX — y(k) = v(p(k)) + n(k)

e If 4 is approx. solution:
&= [ 1) = (@I v, di
®

® is the set of all the possible ¢. This is the so-called 2-norm of the function.
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8 Identification for non-linear systems

8.1 Function estimation

e Another cost function could be:

(@)l

>

€0 = max||y(¢)

Using the 2-norm, we can reformulate the problem as follows:

Find ~*(-) s.t. 4" =argmin(e2(7))
5

Regarding the parameters:

() = AL, 0]
‘P(k) = ’AY[a é]

where 4 is a function with a fixed structure with a fixed number of parameters.

Reduce the search to a certain set of parametrized functions.

We constrain the solution to have some point structure:

V(p) ~= (e, 0)
Example: . .
A 0) — 70

linear combination of the elements of ¢p = ARX! Linear in ¢, linear in 6.

8.1 Function estimation

Machine Learning How we estimate functions? Did we already seen it? Yes, when in Machine

Learning we perform regression, we operate a estimation of a function.

Rectangles We can also sample it, and use rectangular, or trapezoidal parts

in order to interpolate it:

With L rectangles we will have an overall complexity that is p = 2L 4 1 (is it correct?)

For continuous functions (p — 0o) = (e3 — 0). We have then the following situation:

I

P—o0

— yel
[ st p=2 Set of any

possible
T st p=1 unknown

function

(e.g, %)(0] ]
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8 Identification for non-linear systems 8.2 Approximation properties

For a complexity p = |4(-,0,) |= T}

I' is dense in T'y, for p — co = universal representation property: rectangles can represent every
function (universal) with an adequate p (p — oo for continuous functions)

Other methods Not only rectangles or regression, also polynomials, Neural networks, splines, etc...
are other approximation methods.

Approximation and estimation errors In general, regarding any functional approximation problem
(7 is called functional because it is a function that takes as argument a function) we will have the following
situation:

L'y

We will never find an /j}//\ 7 = F

error better P

e}
¢ fY = approximated solution with
than this

P :
struct y, complexity p

one is the Ao ) . . .
approximation = apprf)x1ma}ted and e§t1mated
T P solution with complexity p,

based on available data

e

Fp = any possible function 'Y(« Hp)
v

Approximation error: error between y and p = best solution = Fp

the best Y & I" (does not depend by the dataset)

r)/p = Estimated error: error between "} and Y
(depends on dataset) P

8.2 Approximation properties

We have talked about the possibility of using an approximated structure function for our model:

() ~ Al 0]
Hp.l — y(k)=~[pk)] +nk) ~; unknown
§(k|0) = 3lep(k), 6]

p is the complexity, and it can be “confused” without error (as we stated before) with the dimension of
0 since the dimension of ¢ is fixed.

Now, let’s analyze some properties of the rectangles approximation case. Given the number of rect-
angles p = 3 we can say that:

But it is not true that I's includes I's, because:
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8 Identification for non-linear systems 8.2 Approximation properties

Talking about approximation properties:

1. Chose any é; > 0

= a number of parameters exists such that the approximation error between I‘;, and v (i.e. a

suitable (-, 8),)) exists, so that:

ea(7,Tp) < é
This is the universal approximation property that we already saw: sums of rectangles is
an universal approximator for continuous functions, as well polynomials and neural networks. But
nothing says how much we have to increase p or the dimension of data! This works only in principle.

2. The previous property stated that “we will succeed someday”, but when? How does p increases if
the required error €5 decreases? What we prefer?

number p of parameters
y . ~
required to achieve an error &,

augment
exponentially

augment linearly (better)
- double precision

double paragleters number
/g,
2

We would appreciate if the number of parameters p to obtain a certain error increases moderately
when the error decreases.

There are different mathematical proofs about p behavior (e.g. Barron theorem) but, as for the
first case, they are asymptotic theoretical results. Consider this case:

number p of parameters R
required to achieve an error €,

struct 1

struct 2

1/@‘2

Which structure is better? It really depends on what we want to obtain. You have to ask yourself
what is the required precision, which one is a required precision.

Consider another case:

number p of parameters
. . ol
required to achieve an error &,

math programming methods

l/é\2
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8 Identification for non-linear systems 8.3 Examples of approximated structures

In this case, there is another tradeoff: if the one-shot solution has not so much additional parameters,
probably it will be better to use the one-shot solution instead of using a complex mathematical
programming solution.

8.3 Examples of approximated structures

e Sum of rectangles (or, more in general, sum of hyper rectangles):

\

.

e Generalizing the rectangles approximation we find the methods based on nearest neighbors
algorithms

e RBF (Radial Basis Functions): assume v : D C R — C C R (restricted only on a limited
domain D):

Where they
intersect
its half
value of
¥ for that g}
oint € D
! Gaussian bells

Y

D

How many parameters are needed for RBF'? In the scalar case:

7(<P - Oli)T
o?

L
(. 0) =Y cie
=1

center of the bell

In the general case:

2
0;

_||so—ai||2}

L
i, 0) =3 cio
i=1

A structure like this has spherical symmetry, a; represents the center of the i-th bell, ¢; it’s max
height and the o; the width.

Then, the parameter vector that will characterize this function will be:

0 = col{c;, 04, a4l € [1, L]}
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Identification for non-linear systems 8.3 Examples of approximated structures

e FFFNN (Feed-forward neural networks)

L
$(,0) = i+ feigmoidar(@” cvi + by)
i=1

There are many possibilities of sigmoidal function (e.g Heaviside step, sigmoid, ReLU etc...) as
shown in Machine Learning course.

fsigmoidal (T i + b;) is indeed a function depending on (¢, w;), where w; is a set of vectors

while for RBF was:
w; =
ag;

e So we can just generalize the expression for both FFNN and RBF with:
X L
A, 0)=> ci flo" wi)
i=1

— if f is sigmoidal, it is a FFNN, if f a exponential is RBF. f is called basis function
These are all called neural networks, both FFNN and RBF, because they share the same schematic

representation:
o{ofr—o—
()

If multiple outputs

If w;, ¢ € [1, L] (internal parameters of the basis function f) are chosen a-priori, one for all and then
not anymore optimized, then we can write f as a function of ¢ only!

fle" wi) — file")
So, the structure becomes:

L
A, 0) = Zc file™)

L in the original representation was meaning, for example in RBF, the number of bells — is not
the number of parameters! The dimension of parameters vector is different! For RBF there was
0 = col{...} as parameter vector. For this particular case instead:

c1
0= :
cr
f1(e)
flep) = :
Jr(p)
Then: . .
A, 0] = [f(p)])" 0
y(k|6) = [f(¢)]"6

In the ARX we saw:

So, f plays the role of ¢(k) in the ARX!!

61



8 Identification for non-linear systems

8.4 Parameters optimization

8.4 Parameters optimization
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8 Identification for non-linear systems 8.4 Parameters optimization
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8 Identification for non-linear systems 8.5 N-ARX case
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9 State (and Parameter) Estimation

9 State (and Parameter) Estimation
9.1 State equations
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9 State (and Parameter) Estimation 9.2 Observers
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9 State (and Parameter) Estimation 9.3 Linear Luenberger

9.3 Linear Luenberger
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9 State (and Parameter) Estimation 9.4 Nonlinear Luenberger

9.4 Nonlinear Luenberger

The system is assumed to be described as (x and the others variables are all vectors « since the end of
this part, but we used a lighter notation):

S x(k+1) = Fa(k) + Wu(k)
Uy = Gak)

We have, as already seen, the Luenberger observer:

Luenops z(k+1) = Fa(k) + Wu(k) + Ly(k) — Gz(u)]
B 0] = z(k)

For the non-linear case:
S {x(km = f [o(k), u(k)]
T (k) = g [z (k)]

We said that, in Luenops, [Fz(k)+Wu(k)] can be interpreted as a prediction. If you have the possibility
to measure the system but then you can’t anymore, “you break the measurement tool” (y(k) — A) you
use only Gz(k) — odometry: “were do I believe to be?”. We propagate the “belief” on the robot position
in time, we used the estimated position to predict it — no correction, but this is quite obvious, this is
how we predict stuff. But if we propagate believes without innovation we’re propagating also the errors
(that’s why Gz(k) = y(k)).

We are able to predict the next state given the true state and the exact control input in this purely
theoretical framework. But if we have the predicted state (k) instead of (k) we will not go in z(k + 1),
but in the Z(k + 1|k).

Hence, the prediction z(k + 1) will be given by this “nonlinear Luenberger observer”:

2k +1) = flz(k),ulk)] + Ly(k) = g(2(F))]

L onlinObs *
A entmor {f(k) — 2(k)

But how to choose the gain matrix L in the non-linear case? What some people do is to linearize the
system at k:

0
Fk = aif(xa u)

z z=2z(k),u=u(k)

0

u z=z(k),u=u(k)
0

Gr = 7-9(x)

Ox z=z(k)

But if you have the nonlinear model, why we do we have to linearize it?

In this case, one possibility is to use L at instant k as Ly such that Fj, — LpG}, is asymptotically stable
— maybe you can use the linearization for k, this is reasonable: we do not linearize first and then apply
the linear observer, but we linearize the observer when we don’t have other ideas.

9.5 Kalman filter

But now, let’s consider a more general case, where matrices F, W, G can vary in time and where we have
noises as well:

S w(k+1) = Fra(k) + Wiu(k) + £(k)
k) = Gra(k) +n(k)
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9 State (and Parameter) Estimation 9.5 Kalman filter

In a probabilistic content you can describe the noises based by their probability density functions. We
assume a gaussian distribution:'°

&(k) ~ N(0,Qr) (Gaussian p.d.f. mean=0, variance = Q)

Which are the unknown quantities? Since when we start the estimation we start from 2(0) even before
any measurement, And what is the p.d.f. of z(0)?

z2(0) ~ N(a, X) (“where do you expect to be the measurement before actually doing it”)

We will introduce an already seen notation then: ¢ will be the estimate of v, but the estimate referring
to the instant k; made with all the information available at ko:

(k1|1 (k2)) I(ko) = information available at instant ko = {Z(O)’ ,u(k)}

Notice that, while Z(k|k) means something, §(k|k) does not mean anything! That is because there is no
sense in estimating a y that is already € I(k).

In general:
v(balke) = Bap {o(k)| (k) = [ o(kn)pdr(o(k))do(in) 222
Gaussian Hp.: A-priori knowledge on z(0) is #(0] — 1)

2(0] = 1) ~ N(a, X)
§(k) ~ N(0, Q)
n(k) ~ N(0, Ry)

These gaussian hypothesis with the system’s linearity hypothesis allows us to say:

w(klk — 1) ~ N [2(k|k — 1), S(k|k — 1)]
a(klk)  ~N[2(klk),  S(k|k)]
y(klk —1) ~ N [g(klk —1), S(k|k —1)]

Similarly, we could have rewritten, instead o and 3:

z(0] = 1) ~ N(e, %) = N[£(0] = 1), %(0] = 1)]

The complete filter will be formed then by these equations:

(k|k) =7
#(klk —1) =2
g(klk —1) =2
H(z) ="
Y(klk) =7
S(k|k — 1) =?
S(klk—1) ="

How to compute Z(k|k)?

a(klk) = B {x(k> ‘I(k) = {y<o), :::,y(k)} }

10In other context we can make some other kind of assumptions:

[E(R)| < ee (“deterministic assumption on £(k)”)

This is called “deterministic” because there is no probabilistic connotation — is a bound on measurement uncertainty (like
a measurement’s tool sensibility).
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9 State (and Parameter) Estimation 9.5 Kalman filter

Without any demonstration, let’s see what is the shape of the estimator:

2(k|k) = &(k[k — 1) +£@[y(k) — §(klk —1)]

Prediction Gain Innovation

You can demonstrate that this is not optimal, but true, if the hypothesis hold.

How we compute the gain? With the equations structure we just saw (the covariances are needed, because
not only the mean value is important, but how uncertainty is spread through the space):

I
>

2(k|k)

#(klk — 1)
g(k[k —1)
H(z) =
B(klk) =
S(klk—1) =
S(klk—1) =

(k[k = 1) + H(k)[y(k) — g(k[k — 1)]

N0 ) Y ) )

How to compute &(k|k —1)?

z(k) =Fy_1 (b —1)+ Wi u(k—1)+&(k—1)

&(klk —1) = E{z(k) [I(k—1)} =
—E {Fk_lx(kz 1k — 1)+ Wi_u(k — 1) + £(k — 1)‘I(k: - 1)}

Since u(k — 1) is deterministic and the mean value of the noise £ is 0 we have:

P(klk—1)=Fy_, - E {x (k; . 1(1(k . 1))} + Wiyulk — 1) + B {&(k == 1)
Bk —1) = Fpoy - (k— 1k — 1) + Wi_u(k — 1)
Hence:
&(k|k) = &(klk — 1) + H(k) [y(k) — §(k|k — 1)]
B[k —1) = Fey -2k — 1)k — 1)+ Wi_iu(k — 1)
Gklk—1) =?

H(z) =7
Skik) =7
Skik—1) = ?
Sklk—1) = ?

Y(k|k — 1) is the covariance of x(k) computed w.r.t. the information I'(k — 1). Recalling the Gaussian
hypothesis we made:

z(0] = 1) ~ N(e, %)
§(k) ~ N(0, Q)
n(k) ~ N(0, Ry)

The prediction goes together with the uncertainty:

e(klk — 1) ~ N(ge(k\k — 1), S(k|k — 1))

Skl — 1) = cov{a(k)|1(k = 1)} =

= E {[a(k) = &(klk = )] [(k) = 2(klk — 1] | 10 = 1)} =
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9 State (and Parameter) Estimation 9.5 Kalman filter

- E{ [Fro1z(k —1) + Wi_iu(k — 1) + €k — 1) — Fy_yd(k — 1)k — 1) — We_qu(k — 1)] -

: [Fk,lx(k )+ Wisrulk — 1) + €k — 1) — Fy_yd@(k — 1k — 1) — Wi_qu(k — 1)]T‘ Ik — 1)}

- E{ [Fk_l(x(k 1) —a(k — 1)k — 1)) (x(k 1) —a(k -1k — 1))T] FL | 1(k—1) b+

VE { Fi (x(k 1) —a(k -1k — 1))§T(k k-1

_|_

+E{§(k - 1)(x(k —1) —a(k — 1)k — 1))TF,;{1 I(k—1)

—— e ——
+

+E{ €k~ 1) - 0) 6k = 1) = 0)"| 1k - 1)

Since Fj_1 is a linear operator and & has zero mean:

—l—WE{ (az(k —1) =@k — 1]k - 1))T’I(k - 1)} +

+E{ (6= 1) = 0) (60 = 1) = 0) | 21T} =

We have I(k—1) because {(k — 1) and I(k — 1) are uncorrelated. Moreover, the previous second
and third line are removed because {¢7(k —1)| I(k —1)} = 0. We notice also that the last row is the
covariance @ of £ noise:

QU =1k = 1) = Qu-1 = B{ (60 = 1) = 0) (¢(k - 1) — 0)" |}

" {Notation for covariance matrices: A(k — 1]k —1)

A(HR) '

Ay

Hence we have X(k|k — 1) =

= Fp, E{ {(w(lﬂ 1) — a(k — 1]k — 1)) (:c(k 1) = a(k — 1)k — 1))1 ‘ I(k — 1)} FL | +

Yko1

+ 0+
+ 0+
+ Qi1

Let’s talk about what E{fT(k — 1)| I(k — 1)} = 0 implies. Since we cancel out & from the estimate,
even if we have a very small covariance at the start, the disturbance will propagate, because it will not
be possible to cancel out Qx_1:

S(klk —1) = Fu_i S (k- 1k — 1) L + Qe

74



9 State (and Parameter) Estimation 9.5 Kalman filter

So now we have:

#(k|k) =& (k|k —1) +H(k){ (k)—g)(k|k—1)}
E(klk—1) = Fy1d&(k—1|k—1) + We_qu(k — 1)
g(klk—1) =7

H(z) =7

E(k|k) ?

S(klk—1) = Foy5(k — 1)k — 1)FT | + Qrr
Slklk—1) = 2

Let’s focus now on the predicted output:

G(klk—1) = E{y(k)’I(kq)} - E{Gk;z:(k)Jrn(k)’I(k—l)} YN E{x(k)’[(kfl)}JerW:

Hence

gklk —1) =Gy z(klk—1)
And the covariance is
S(klk = 1) = cov{y(k) 10k = 1)} = B{ [y(k) — g(klk — D] [y(k) — 5kl — 1] |16 = 1)}
Then, avoiding the computations that are analogue to the previous case (R is the covariance of 7 noise:):

S(k|lk —1) = GpX(k|k — 1)GF + Ry,

Now the situation is the following

k|k) = & (k|k — 1) + H(k) {y(k)fg}(kﬂkfl)}

I

E(klk—1) =Fy1&(k—1k—1)+Wi_ru(k —1)
g(klk —1) =Gy a(klk—1)

H(z) =7

Y (k|k) =7

(
Sklk—1) =F 12k -1k - 1D)F | + Qs
(klk—1) =G X(klk—1) GF + Ry

We have also, for the gain H of the Kalman filter:
H(z) = S(klk — 1)GLS(k|k —1)7*
this means, if we have a good prediction (X(k|k — 1) small) we need a lower gain. Also, if we trust more

the new measurements (S(k|k — 1) small) we will have a bigger gain, while increasing Ry, increases the
uncertainty on new measurement S(k|k — 1), hence the gain H (k) decreases.

How to recall the dimensions of H(z) expression? — see MobRo course!

Let’s check what is missing:

&(k|k) ::z(k|k—1)+H(k){ (k)fy(k|k71)}
E(klk—1) =Fr1&(k—1k—1)+Wi_ru(k —1)
Gklk—1) =Gy @(klk—1)

H(z) = S (klk — DGTS(klk — 1)~

(k[k) =7
S(klk—1) = FeaX(k =1k - 1) F + Qr
(klk—1) =G, S(klk—1) GF + Ry

We’re missing ¥(k|k). This can be computed as:
Y(klk) = S(k|k — 1) — H(k)S(k|k — 1)H (k)T

This result is quite intuitive. In fact, what makes me decrease the covariance? The measurements, if not,
there is a problem in my system.

(0]
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Initialization If you are “the angry wife waiting for the husband to enter the house”, the first posi-
tion you’ll look will be the door. The analogy with the initialization holds by means of the following

expressions:

20 -1)=a X0 -1)=3

Then, we will have

£(0[0) =a+ H(0)[y(0) — #(0] — 1)]
#0]-1) =«

g(klk—1) =Gy a

H(z) =%nGEsyt

£(0[0) =¥~ H(0)SoH(0)"

20/ -1) =%

So =Go X GY + Ry

Hence, the kalman filter complete structure is (put here in executive order):

{Fr, Wi, G, Qi , Ry}

20 -1) =«
(O -1) =%
E(klk—1) =F1&(k—1k—1)+ Wi_ru(k —1)

S(klk—1) = Fe13(k— 1k — D)FL | 4+ Qr-1
gklk—1) =Gy @(klk—1)
S(klk—1) =Gy X(klk—1) G +Rk

H(z) = S (klk — DGTS(klk — 1)~
(k) = & (k|k — 1) + H(E) [y(k) - y(k|k—1)}
S(k|k) — S(k|k — 1) — H(k)S(k)H (k)T

The quantities Z(k|k — 1) and #(k|k) have to be computed online, but it is ok to compute them offline if
Fy, Wy, Gg, Qg, and Ry are a priori known (e.g. in a time invariant framework)

9.6 Extended Kalman filter

Consider a non-linear system:

. :{x<k+1> = f [o(k), u(k)] + £(k)
k) = gle(®)] + (k)

apply Kalman F. — &(k|k) = Z(k|k — 1) + H(2)[y(k) — §(k|k — 1))
Assume #(k — 1|k — 1) given z(k + 1) = f [z(k), u(k)] + £(k), we will have these approximated results
BRIk~ 1) = fio [20k— 1]k — 1), u(k)]

g(klk = 1) = gk [2(k|k —1)]
H(k) = S(klk — )GTS(k|k —1)~"

We take the point and we linearize it around the best value (that is the prediction &(k|k — 1)):

0

G = a—mgk(:v) S(klk—1) = F_1%(k— 1|k — DEL | + Q1

=2 (k|k—1)

S(klk —1) = GpX(k|k — 1)GE + Ry,

0
Fio1:= 5 fim1(2)
x w=@(k—1]k—1), u=u(k—1)

Y(k|k) = S(k|k — 1) — H(k)S(k)H (k)T
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Gaussianity no more true (because of the nonlinearity of the system) — not anymore the zero mean
and only reasonable approximated covariances.

For sure the quantities has to be computed online, and the matrices as well!

Y (k|k) = (approximate) measurement of uncertainty

Hence, the Extended Kalman Filter structure is:

{We, Qr, Ry}
#0[—-1) =a
20/-1) =%
2(klk—1) = fr—1[2(k — 1]k —1),u(k)]

_ 9
Fi = oz /r- 1(z )|r #(k—1|k— 1) u=u(k—1)
Y(klk—1) =F12(k—-1k-1)FL b1+ Qr—1
g(klk —1) = gg[2(klk —1)]

G = (’%gk(x”z:i(lﬂk—l)

S(kik—1) =Ge S(kk—1) Gf + Ry

H(k) = S(klk - 1)GTS<ka -7

#klE) =@ (k[k = 1)+ H ) [y(k) 3 (k1)
S(klk) = N(klk—1) = H(k)S(k)H (k)"

In linear case, the kalman filter is BLUE (Best Linear Unbiased Estimator — you can’t find a better
estimator in term of minimum varianc in the error), this also without gaussian hypothesis.

For non-linear cases, the Extended Kalman Filter is in general no more optimal but even not BLUE
(is not a linear filter). The only thing that we can say is that under very specific hypotheses it converges,
but in general it is just a reasonable estimator (“in general it works but you don’t have any guarantee
of convergence, perhaps it diverges”).

If some parameter is unknown but the functions are known:

1 =
grey-box : ok +1) fle(k), u(k), 0] + £(k)
y(k) = glz(k), 0] + n(k)
If even the functions are unknown:
black-box : { 7*
Ik — Tk

Consider the grey-box case. Now, let’s change the notation, using & instead of x and let’s do it as well
for the functions

T
grey-box (new notation) : {

Let’s perform now a state redefinition (state augmentation):

i #(k+ 1) k), u(k), 0] [&(k)
(k) = [gg’;ﬂ S lok+n| [ o(k) 1o ]
y(k) = g[z(k),0] +n(k)

|EE+1)
olk+1) = [G(MD] = Fla(k),u(k). 0] + €(k)

y(k) = glz(k), 0] + n(k)
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Using the EKF
) = [FEIT s [kl Saolklh)
&(k|k) = {é(kk)} (K| )_{ 0 k

Consider also a linear system:

If we augment the state, we obtain a nonlinear system — hence all the BLUE assumptions are lost.
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